Checkers

GP: 21 | W: 14 | L: 5 | OTL: 2 | P: 30
GF: 42 | GA: 21 | PP%: 18.84% | PK%: 78.79%
GM : Martin Grech | Morale : 50 | Team Overall : 59
Next Games vs Bears
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kyle CliffordX100.009069737579577962285862652572756550630
2Kerby RychelXX100.007775826775838962505862665947476550620
3Morgan KlimchukX100.007167816967768062505862625944446450600
4Marko DanoXXX100.007643918066485562445459672559596350590
5Jayce Hawryluk (R)XX100.006666666766687061766156595344446050580
6Blake Speers (R)XX100.007468878268626553664557615444446050570
7Emile PoirierXX100.007469856869667054505747624544445750560
8Dave ClarksonX100.0088756570575167626058615637376150540
9Chris BigrasX100.007143957771646456254747712548485950610
10Trevor CarrickX100.007470836670758056255246624444445850600
Scratches
1Tyler WotherspoonX79.817878796578687255255243644144445750590
TEAM AVERAGE98.16766681717065725945555559455152555059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anton Forsberg97.00697268687068596678704248486850650
2Jordan Binnington100.00685974627069727773733044446950650
Scratches
1Craig Anderson100.00647978726166526463646473756450640
2David Rittich100.00656159836862606573656546466550630
3Jack Campbell100.00617189796164526357563044446050600
4Jon Gillies100.00507369895050615162506545455650570
5Hunter Miska (R)100.00556784655156556154543044445650560
6Matiss Kivlenieks (R)100.00537493724755505849493044445450550
7Jonas Johansson100.00454860844244505245463044444750500
TEAM AVERAGE99.6759677575585957626259434848605059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Todd Richards55617452455457USA481900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Blake SpeersCheckers (CAR)C/RW21771465240798023458.75%526712.7500001000001058.33%24275001.0500134233
2Jayce HawrylukCheckers (CAR)C/RW163811348306255420315.56%820512.8400001000001054.17%264136001.0700114320
3Morgan KlimchukCheckers (CAR)LW2135833420976823574.41%32049.7200000000010015.38%13233000.7800112131
4Trevor CarrickCheckers (CAR)D2114565145131019365.26%2134216.330000100001000.00%0016000.2900225110
5Emile PoirierCheckers (CAR)LW/RW2112327765573213163.12%121210.1200000000000041.18%1752000.2800454000
6Dave ClarksonCheckers (CAR)RW21112-12420904412162.27%01105.2500000000000044.44%990000.3600202001
7Tyler WotherspoonCheckers (CAR)D14101-25335101113847.69%1319814.210000100001000.00%0015000.1000124000
Team Total or Average1351727441733925559693101021755.48%51154111.4200005000062051.99%3277747000.5700121425795
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anton ForsbergCheckers (CAR)97200.9241.895410117223131100.0000921420
2Jordan BinningtonCheckers (CAR)127320.9042.797310034355194000.0000120203
Team Total or Average2114520.9122.4012730151578325100.00002121623


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Anton ForsbergCheckers (CAR)C251992-11-26No192 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$750,000$Link
Blake SpeersCheckers (CAR)C/RW211997-01-02Yes185 Lbs5 ft11NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Chris BigrasCheckers (CAR)D231995-02-21No190 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$Link
Craig AndersonCheckers (CAR)G371981-07-15 1:46:14 AMNo187 Lbs6 ft2NoNoNo1UFAPro & Farm5,000,000$Link
Dave ClarksonCheckers (CAR)RW341984-05-31 2:54:48 AMNo207 Lbs6 ft0NoNoNo1UFAPro & Farm5,250,000$
David RittichCheckers (CAR)G261992-08-18No202 Lbs6 ft3NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Emile PoirierCheckers (CAR)LW/RW231994-12-14No196 Lbs6 ft2NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link
Hunter MiskaCheckers (CAR)C231995-07-07Yes170 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link
Jack CampbellCheckers (CAR)D261992-01-09No200 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$Link
Jayce HawrylukCheckers (CAR)C/RW221995-12-31Yes186 Lbs5 ft11NoNoNo2RFAPro & Farm850,000$850,000$Link
Jon GilliesCheckers (CAR)RW241994-01-21No223 Lbs6 ft6NoNoNo1RFAPro & Farm975,000$Link
Jonas JohanssonCheckers (CAR)C/LW231995-09-19No206 Lbs6 ft4NoNoNo2RFAPro & Farm750,000$750,000$Link
Jordan BinningtonCheckers (CAR)LW/RW251993-07-11No167 Lbs6 ft1NoNoNo2RFAPro & Farm750,000$750,000$Link
Kerby RychelCheckers (CAR)LW/RW241994-10-07No213 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link
Kyle CliffordCheckers (CAR)LW261992-01-13No211 Lbs6 ft2NoNoNo1RFAPro & Farm1,750,000$Link
Marko DanoCheckers (CAR)C/LW/RW231994-11-29No212 Lbs5 ft11NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link
Matiss KivlenieksCheckers (CAR)G221996-08-26Yes184 Lbs6 ft2NoNoNo2RFAPro & Farm1,000,000$1,000,000$Link
Morgan KlimchukCheckers (CAR)LW231995-03-01No185 Lbs6 ft0NoNoNo1RFAPro & Farm900,000$Link
Trevor CarrickCheckers (CAR)D241994-07-03No186 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$750,000$Link
Tyler Wotherspoon (Out of Payroll)Checkers (CAR)D251993-03-12No207 Lbs6 ft2NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2024.95195 Lbs6 ft21.801,328,750$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Blake Speers30122
3Morgan KlimchukEmile Poirier20122
4Dave Clarkson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Trevor Carrick30122
320122
4Trevor Carrick10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Blake Speers40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Trevor Carrick40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Morgan Klimchuk40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Trevor Carrick40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Trevor Carrick40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Morgan Klimchuk40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Trevor Carrick40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Emile Poirier, Dave Clarkson, Emile Poirier, Dave Clarkson
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , Morgan Klimchuk,
Goalie
#1 : , #2 : Anton Forsberg


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000422110000004220000000000021.00048120014282342517719824311391514105240.00%2150.00%019840648.77%17740044.25%17035348.16%537378449152289146
2Bears31100100121112100010010821010000023-130.5001223350014282341021771982431188231124214214.29%6266.67%019840648.77%17740044.25%17035348.16%537378449152289146
3Crunch32001000945220000006241000100032161.0009162500142823488177198243115116453410330.00%5180.00%019840648.77%17740044.25%17035348.16%537378449152289146
4Devils32001000844110000002112100100063361.000816240014282348317719824311923510939700.00%130100.00%019840648.77%17740044.25%17035348.16%537378449152289146
5Gulls11000000505110000005050000000000021.000510150114282344217719824311123958400.00%000.00%019840648.77%17740044.25%17035348.16%537378449152289146
6Heat1010000024-2000000000001010000024-200.00024600142823431177198243113813257400.00%50100.00%019840648.77%17740044.25%17035348.16%537378449152289146
7IceCaps1010000023-1000000000001010000023-100.00024600142823421177198243111531711100.00%110.00%019840648.77%17740044.25%17035348.16%537378449152289146
8Moose1010000034-1000000000001010000034-100.0003690014282342517719824311319177300.00%6266.67%119840648.77%17740044.25%17035348.16%537378449152289146
9Penguins21100000651110000004131010000024-220.500611170014282346217719824311471455307342.86%5180.00%019840648.77%17740044.25%17035348.16%537378449152289146
10Phantoms21001000853210010008530000000000041.000815230014282345717719824311622054223133.33%12283.33%019840648.77%17740044.25%17035348.16%537378449152289146
11Pirates1000010034-1000000000001000010034-110.5003690014282343017719824311371318175120.00%5260.00%119840648.77%17740044.25%17035348.16%537378449152289146
12Senators10001000431000000000001000100043121.00047110014282343317719824311351019164125.00%2150.00%019840648.77%17740044.25%17035348.16%537378449152289146
Since Last GM Reset21105042006951181190011004221211015031002730-3300.7146913220101142823462917719824311578191593248691318.84%661478.79%219840648.77%17740044.25%17035348.16%537378449152289146
Total21105042006951181190011004221211015031002730-3300.7146913220101142823462917719824311578191593248691318.84%661478.79%219840648.77%17740044.25%17035348.16%537378449152289146
Vs Conference199404200624715108001100372116914031002526-1280.7376211818000142823455617719824311528175473233611321.31%611477.05%219840648.77%17740044.25%17035348.16%537378449152289146
16Wolf Pack11000000321110000003210000000000021.00036900142823430177198243113117135200.00%4175.00%019840648.77%17740044.25%17035348.16%537378449152289146

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2130W46913220162957819159324801
All Games
GPWLOTWOTL SOWSOLGFGA
2110542006951
Home Games
GPWLOTWOTL SOWSOLGFGA
119011004221
Visitor Games
GPWLOTWOTL SOWSOLGFGA
101531002730
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
691318.84%661478.79%2
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
177198243111428234
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
19840648.77%17740044.25%17035348.16%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
537378449152289146


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0312Bears4Checkers7WBoxScore
5 - 2018-10-0634Devils1Checkers2WBoxScore
9 - 2018-10-1061Checkers3Crunch2WXBoxScore
10 - 2018-10-1169Phantoms4Checkers5WXBoxScore
12 - 2018-10-1378Checkers3Pirates4LXBoxScore
14 - 2018-10-1599Crunch1Checkers4WBoxScore
17 - 2018-10-18119Checkers2Bears3LBoxScore
18 - 2018-10-19130Checkers2Devils1WXBoxScore
20 - 2018-10-21139Bears4Checkers3LXBoxScore
23 - 2018-10-24161Americans2Checkers4WBoxScore
25 - 2018-10-26178Checkers2Penguins4LBoxScore
27 - 2018-10-28190Checkers2Heat4LBoxScore
28 - 2018-10-29195Checkers3Moose4LBoxScore
29 - 2018-10-30208Crunch1Checkers2WBoxScore
32 - 2018-11-02230Wolf Pack2Checkers3WBoxScore
35 - 2018-11-05251Gulls0Checkers5WBoxScore
37 - 2018-11-07264Checkers2IceCaps3LBoxScore
40 - 2018-11-10281Checkers4Devils2WBoxScore
41 - 2018-11-11293Penguins1Checkers4WBoxScore
44 - 2018-11-14314Phantoms1Checkers3WBoxScore
45 - 2018-11-15325Checkers4Senators3WXBoxScore
48 - 2018-11-18346Checkers-Heat-
49 - 2018-11-19355Stars-Checkers-
52 - 2018-11-22376 Admirals-Checkers-
55 - 2018-11-25401Checkers-Wolves-
56 - 2018-11-26408Wild-Checkers-
59 - 2018-11-29427Checkers-Wolf Pack-
61 - 2018-12-01438Crunch-Checkers-
63 - 2018-12-03452Checkers-Marlies-
65 - 2018-12-05469Ice Hogs-Checkers-
68 - 2018-12-08488Checkers-Falcons-
70 - 2018-12-10501Falcons-Checkers-
72 - 2018-12-12509Checkers-Barracuda-
74 - 2018-12-14530Phantoms-Checkers-
76 - 2018-12-16539Checkers-Reign-
78 - 2018-12-18556Checkers-Americans-
80 - 2018-12-20570Senators-Checkers-
83 - 2018-12-23590Checkers-Comets-
85 - 2018-12-25603Americans-Checkers-
87 - 2018-12-27618Checkers-Falcons-
88 - 2018-12-28632Bears-Checkers-
90 - 2018-12-30647Checkers-Crunch-
92 - 2019-01-01662Senators-Checkers-
96 - 2019-01-05690Monsters-Checkers-
98 - 2019-01-07706Checkers-Bruins-
100 - 2019-01-09721IceCaps-Checkers-
102 - 2019-01-11734Checkers-Bruins-
103 - 2019-01-12747Checkers-Moose-
105 - 2019-01-14759Bruins-Checkers-
108 - 2019-01-17781Checkers-Griffins-
109 - 2019-01-18790Wolf Pack-Checkers-
113 - 2019-01-22813Sound Tigers-Checkers-
116 - 2019-01-25838Checkers-Moose-
117 - 2019-01-26845Checkers-Sound Tigers-
118 - 2019-01-27851Marlies-Checkers-
122 - 2019-01-31877Pirates-Checkers-
125 - 2019-02-03900Devils-Checkers-
127 - 2019-02-05912Checkers-Pirates-
130 - 2019-02-08930Checkers-Wolves-
131 - 2019-02-09938Checkers-Penguins-
132 - 2019-02-10945Pirates-Checkers-
136 - 2019-02-14969Checkers-Pirates-
137 - 2019-02-15979Bears-Checkers-
140 - 2019-02-18998Rampage-Checkers-
142 - 2019-02-201017Checkers-Condors-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221027Rampage-Checkers-
148 - 2019-02-261056Moose-Checkers-
149 - 2019-02-271062Checkers-Phantoms-
150 - 2019-02-281071Checkers-Bears-
153 - 2019-03-031090Checkers-Stars-
154 - 2019-03-041095Sound Tigers-Checkers-
156 - 2019-03-061110Checkers-Marlies-
158 - 2019-03-081122Checkers-Phantoms-
161 - 2019-03-111140Moose-Checkers-
164 - 2019-03-141160Devils-Checkers-
166 - 2019-03-161175Checkers-IceCaps-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,582,500$ 2,507,500$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
763,010$ 0$ 763,010$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 15,372$ 1,890,756$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201821105042006951181190011004221211015031002730-3306913220101142823462917719824311578191593248691318.84%661478.79%219840648.77%17740044.25%17035348.16%537378449152289146
Total Regular Season21105042006951181190011004221211015031002730-3306913220101142823462917719824311578191593248691318.84%661478.79%219840648.77%17740044.25%17035348.16%537378449152289146