Checkers

GP: 45 | W: 29 | L: 10 | OTL: 6 | P: 64
GF: 144 | GA: 113 | PP%: 17.86% | PK%: 76.10%
GM : Martin Grech | Morale : 50 | Team Overall : 59
Next Games #721 vs IceCaps
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kerby RychelXX100.007775826775838962505862665947476550620
2Morgan KlimchukX100.007167816967768062505862625944446450600
3Marko DanoXXX100.007643918066485562445459672559596350590
4Jayce Hawryluk (R)XX100.006666666766687061766156595344446050580
5Blake Speers (R)XX100.007468878268626553664557615444446050570
6Emile PoirierXX100.007469856869667054505747624544445750560
7Dave ClarksonX100.0088756570575167626058615637376150540
8Chris BigrasX100.007143957771646456254747712548485950610
9Trevor CarrickX100.007470836670758056255246624444445850600
10Tyler WotherspoonX100.007878796578687255255243644144445750590
Scratches
TEAM AVERAGE100.00756581716966715847545458474949545059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anton Forsberg99.00697268687068596678704248486850650
2Jordan Binnington100.00685974627069727773733044446950650
Scratches
1Craig Anderson100.00647978726166526463646473756450640
2David Rittich100.00656159836862606573656546466550630
3Jack Campbell100.00617189796164526357563044446050600
4Jon Gillies100.00507369895050615162506545455650570
5Hunter Miska (R)100.00556784655156556154543044445650560
6Matiss Kivlenieks (R)100.00537493724755505849493044445450550
7Jonas Johansson100.00454860844244505245463044444750500
TEAM AVERAGE99.8959677575585957626259434848605059
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Todd Richards55617452455457USA481900,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Blake SpeersCheckers (CAR)C/RW451414281176601417208531406.73%856812.6400013000013058.70%46528000.9800336575
2Morgan KlimchukCheckers (CAR)LW4561420856301718135451044.44%54349.6700000000081026.92%26427000.9212114462
3Jayce HawrylukCheckers (CAR)C/RW163811348306255420315.56%820512.8400001000001054.17%264136001.0700114320
4Dave ClarksonCheckers (CAR)RW45246-142301508123362.47%02335.2000000000000041.67%12150000.5102303132
5Trevor CarrickCheckers (CAR)D45246147765212228787.14%4074316.530000200008100.00%0130000.1600328134
6Emile PoirierCheckers (CAR)LW/RW2412317765793614202.78%224610.2800000000000041.18%1762000.2400454001
7Tyler WotherspoonCheckers (CAR)D14101-25335101113847.69%1319814.210000100001000.00%0015000.1000124000
Team Total or Average23429467534429315901025551703435.23%76263211.25000190000206051.78%36512968000.5714161433142114
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Anton ForsbergCheckers (CAR)3322740.9122.1719872172816460100.556933451252
2Jordan BinningtonCheckers (CAR)127320.9042.797310034355194000.0000120203
Team Total or Average45291060.9092.342718211061171654100.556945451455


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anton ForsbergCheckers (CAR)G261992-11-26No192 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Blake SpeersCheckers (CAR)C/RW221997-01-02Yes185 Lbs5 ft11NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Chris BigrasCheckers (CAR)D231995-02-21No190 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Craig AndersonCheckers (CAR)G371981-07-15 1:46:14 AMNo187 Lbs6 ft2NoNoNo1UFAPro & Farm5,000,000$0$0$NoLink
Dave ClarksonCheckers (CAR)RW341984-05-31 2:54:48 AMNo207 Lbs6 ft0NoNoNo1UFAPro & Farm5,250,000$0$0$No
David RittichCheckers (CAR)G261992-08-18No202 Lbs6 ft3NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Emile PoirierCheckers (CAR)LW/RW241994-12-14No196 Lbs6 ft2NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Hunter MiskaCheckers (CAR)G231995-07-07Yes170 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Jack CampbellCheckers (CAR)G271992-01-09No200 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Jayce HawrylukCheckers (CAR)C/RW231995-12-31Yes186 Lbs5 ft11NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Jon GilliesCheckers (CAR)G241994-01-21No223 Lbs6 ft6NoNoNo1RFAPro & Farm975,000$0$0$NoLink
Jonas JohanssonCheckers (CAR)G231995-09-19No206 Lbs6 ft4NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Jordan BinningtonCheckers (CAR)G251993-07-11No167 Lbs6 ft1NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Kerby RychelCheckers (CAR)LW/RW241994-10-07No213 Lbs6 ft1NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Marko DanoCheckers (CAR)C/LW/RW241994-11-29No212 Lbs5 ft11NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Matiss KivlenieksCheckers (CAR)G221996-08-26Yes184 Lbs6 ft2NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Morgan KlimchukCheckers (CAR)LW231995-03-01No185 Lbs6 ft0NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Trevor CarrickCheckers (CAR)D241994-07-03No186 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Tyler WotherspoonCheckers (CAR)D251993-03-12No207 Lbs6 ft2NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1925.21195 Lbs6 ft21.841,306,579$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Blake Speers30122
3Morgan Klimchuk20122
4Dave Clarkson10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Trevor Carrick30122
320122
4Trevor Carrick10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Blake Speers40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Trevor Carrick40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Morgan Klimchuk40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Trevor Carrick40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Trevor Carrick40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Morgan Klimchuk40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Trevor Carrick40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, Dave Clarkson, , Dave Clarkson
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , , Morgan Klimchuk,
Goalie
#1 : , #2 : Anton Forsberg


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals11000000312110000003120000000000021.00035800334657104035638449532281057500.00%000.00%038880148.44%37881746.27%34474646.11%1150827988329599293
2Americans31100001813-5210000015411010000039-630.5008152300334657108135638449532962545437228.57%15660.00%038880148.44%37881746.27%34474646.11%1150827988329599293
3Barracuda10001000431000000000001000100043121.0004812003346571037356384495322661210500.00%10100.00%038880148.44%37881746.27%34474646.11%1150827988329599293
4Bears412001001616031100100141311010000023-130.375162945003346571013235638449532132331225218211.11%11463.64%038880148.44%37881746.27%34474646.11%1150827988329599293
5Bruins11000000321000000000001100000032121.000358003346571022356384495323791092150.00%50100.00%038880148.44%37881746.27%34474646.11%1150827988329599293
6Comets1000010012-1000000000001000010012-110.50012300334657101235638449532265612300.00%3166.67%038880148.44%37881746.27%34474646.11%1150827988329599293
7Crunch5300200014773200100083521001000642101.0001426400033465710136356384495328535644816425.00%7271.43%038880148.44%37881746.27%34474646.11%1150827988329599293
8Devils32001000844110000002112100100063361.0008162400334657108335638449532923510939700.00%130100.00%038880148.44%37881746.27%34474646.11%1150827988329599293
9Falcons321000001275110000004312110000084440.6671222340033465710943563844953280185835700.00%14378.57%138880148.44%37881746.27%34474646.11%1150827988329599293
10Gulls11000000505110000005050000000000021.0005101501334657104235638449532123958400.00%000.00%038880148.44%37881746.27%34474646.11%1150827988329599293
11Heat2010100056-1000000000002010100056-120.500510150033465710563563844953265223820700.00%90100.00%038880148.44%37881746.27%34474646.11%1150827988329599293
12Ice Hogs11000000211110000002110000000000021.00024600334657101935638449532144892150.00%4175.00%038880148.44%37881746.27%34474646.11%1150827988329599293
13IceCaps1010000023-1000000000001010000023-100.000246003346571021356384495321531711100.00%110.00%038880148.44%37881746.27%34474646.11%1150827988329599293
14Marlies1000010045-1000000000001000010045-110.500481200334657102735638449532279883133.33%4175.00%138880148.44%37881746.27%34474646.11%1150827988329599293
15Monsters11000000413110000004130000000000021.00046100033465710293563844953215419127114.29%2150.00%038880148.44%37881746.27%34474646.11%1150827988329599293
16Moose1010000034-1000000000001010000034-100.00036900334657102535638449532319177300.00%6266.67%138880148.44%37881746.27%34474646.11%1150827988329599293
17Penguins21100000651110000004131010000024-220.5006111700334657106235638449532471455307342.86%5180.00%038880148.44%37881746.27%34474646.11%1150827988329599293
18Phantoms3200100010643200100010640000000000061.00010182800334657108135638449532862761347114.29%13284.62%038880148.44%37881746.27%34474646.11%1150827988329599293
19Pirates1000010034-1000000000001000010034-110.50036900334657103035638449532371318175120.00%5260.00%138880148.44%37881746.27%34474646.11%1150827988329599293
20Reign1000000123-1000000000001000000123-110.5002460033465710213563844953215412134125.00%6183.33%038880148.44%37881746.27%34474646.11%1150827988329599293
21Senators301020009902010100056-11000100043140.66791524003346571073356384495321074160379222.22%15473.33%138880148.44%37881746.27%34474646.11%1150827988329599293
22Stars11000000514110000005140000000000021.000510150033465710343563844953224821113133.33%3166.67%038880148.44%37881746.27%34474646.11%1150827988329599293
Total452110084021441133123162031018045352258053016468-4640.711144269413013346571012583563844953211883729495131402517.86%1593876.10%738880148.44%37881746.27%34474646.11%1150827988329599293
24Wild11000000624110000006240000000000021.0006121800334657102535638449532136291433100.00%2150.00%138880148.44%37881746.27%34474646.11%1150827988329599293
25Wolf Pack22000000743110000003211100000042241.0007132000334657105335638449532552248174125.00%9188.89%138880148.44%37881746.27%34474646.11%1150827988329599293
26Wolves1010000024-2000000000001010000024-200.000246003346571023356384495322371210100.00%6350.00%038880148.44%37881746.27%34474646.11%1150827988329599293
_Since Last GM Reset452110084021441133123162031018045352258053016468-4640.711144269413013346571012583563844953211883729495131402517.86%1593876.10%738880148.44%37881746.27%34474646.11%1150827988329599293
_Vs Conference30137063019382111692031015136151445032004246-4420.70093172265003346571082635638449532847275634352891820.22%1092676.15%538880148.44%37881746.27%34474646.11%1150827988329599293

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4564W21442694131258118837294951301
All Games
GPWLOTWOTL SOWSOLGFGA
4521108402144113
Home Games
GPWLOTWOTL SOWSOLGFGA
2316231018045
Visitor Games
GPWLOTWOTL SOWSOLGFGA
225853016468
Last 10 Games
WLOTWOTL SOWSOL
440101
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1402517.86%1593876.10%7
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
3563844953233465710
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
38880148.44%37881746.27%34474646.11%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1150827988329599293


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0312Bears4Checkers7WBoxScore
5 - 2018-10-0634Devils1Checkers2WBoxScore
9 - 2018-10-1061Checkers3Crunch2WXBoxScore
10 - 2018-10-1169Phantoms4Checkers5WXBoxScore
12 - 2018-10-1378Checkers3Pirates4LXBoxScore
14 - 2018-10-1599Crunch1Checkers4WBoxScore
17 - 2018-10-18119Checkers2Bears3LBoxScore
18 - 2018-10-19130Checkers2Devils1WXBoxScore
20 - 2018-10-21139Bears4Checkers3LXBoxScore
23 - 2018-10-24161Americans2Checkers4WBoxScore
25 - 2018-10-26178Checkers2Penguins4LBoxScore
27 - 2018-10-28190Checkers2Heat4LBoxScore
28 - 2018-10-29195Checkers3Moose4LBoxScore
29 - 2018-10-30208Crunch1Checkers2WBoxScore
32 - 2018-11-02230Wolf Pack2Checkers3WBoxScore
35 - 2018-11-05251Gulls0Checkers5WBoxScore
37 - 2018-11-07264Checkers2IceCaps3LBoxScore
40 - 2018-11-10281Checkers4Devils2WBoxScore
41 - 2018-11-11293Penguins1Checkers4WBoxScore
44 - 2018-11-14314Phantoms1Checkers3WBoxScore
45 - 2018-11-15325Checkers4Senators3WXBoxScore
48 - 2018-11-18346Checkers3Heat2WXBoxScore
49 - 2018-11-19355Stars1Checkers5WBoxScore
52 - 2018-11-22376 Admirals1Checkers3WBoxScore
55 - 2018-11-25401Checkers2Wolves4LBoxScore
56 - 2018-11-26408Wild2Checkers6WBoxScore
59 - 2018-11-29427Checkers4Wolf Pack2WBoxScore
61 - 2018-12-01438Crunch1Checkers2WXBoxScore
63 - 2018-12-03452Checkers4Marlies5LXBoxScore
65 - 2018-12-05469Ice Hogs1Checkers2WBoxScore
68 - 2018-12-08488Checkers7Falcons2WBoxScore
70 - 2018-12-10501Falcons3Checkers4WBoxScore
72 - 2018-12-12509Checkers4Barracuda3WXBoxScore
74 - 2018-12-14530Phantoms1Checkers2WBoxScore
76 - 2018-12-16539Checkers2Reign3LXXBoxScore
78 - 2018-12-18556Checkers3Americans9LBoxScore
80 - 2018-12-20570Senators3Checkers4WXBoxScore
83 - 2018-12-23590Checkers1Comets2LXBoxScore
85 - 2018-12-25603Americans2Checkers1LXXBoxScore
87 - 2018-12-27618Checkers1Falcons2LBoxScore
88 - 2018-12-28632Bears5Checkers4LBoxScore
90 - 2018-12-30647Checkers3Crunch2WBoxScore
92 - 2019-01-01662Senators3Checkers1LBoxScore
96 - 2019-01-05690Monsters1Checkers4WBoxScore
98 - 2019-01-07706Checkers3Bruins2WBoxScore
100 - 2019-01-09721IceCaps-Checkers-
102 - 2019-01-11734Checkers-Bruins-
103 - 2019-01-12747Checkers-Moose-
105 - 2019-01-14759Bruins-Checkers-
108 - 2019-01-17781Checkers-Griffins-
109 - 2019-01-18790Wolf Pack-Checkers-
113 - 2019-01-22813Sound Tigers-Checkers-
116 - 2019-01-25838Checkers-Moose-
117 - 2019-01-26845Checkers-Sound Tigers-
118 - 2019-01-27851Marlies-Checkers-
122 - 2019-01-31877Pirates-Checkers-
125 - 2019-02-03900Devils-Checkers-
127 - 2019-02-05912Checkers-Pirates-
130 - 2019-02-08930Checkers-Wolves-
131 - 2019-02-09938Checkers-Penguins-
132 - 2019-02-10945Pirates-Checkers-
136 - 2019-02-14969Checkers-Pirates-
137 - 2019-02-15979Bears-Checkers-
140 - 2019-02-18998Rampage-Checkers-
142 - 2019-02-201017Checkers-Condors-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221027Rampage-Checkers-
148 - 2019-02-261056Moose-Checkers-
149 - 2019-02-271062Checkers-Phantoms-
150 - 2019-02-281071Checkers-Bears-
153 - 2019-03-031090Checkers-Stars-
154 - 2019-03-041095Sound Tigers-Checkers-
156 - 2019-03-061110Checkers-Marlies-
158 - 2019-03-081122Checkers-Phantoms-
161 - 2019-03-111140Moose-Checkers-
164 - 2019-03-141160Devils-Checkers-
166 - 2019-03-161175Checkers-IceCaps-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,556,945$ 2,482,500$ 2,412,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,554,710$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 14,777$ 1,019,613$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018452110084021441133123162031018045352258053016468-464144269413013346571012583563844953211883729495131402517.86%1593876.10%738880148.44%37881746.27%34474646.11%1150827988329599293
Total Regular Season452110084021441133123162031018045352258053016468-464144269413013346571012583563844953211883729495131402517.86%1593876.10%738880148.44%37881746.27%34474646.11%1150827988329599293