Monsters

GP: 46 | W: 27 | L: 17 | OTL: 2 | P: 56
GF: 128 | GA: 121 | PP%: 20.69% | PK%: 70.77%
GM : Sebastian Bravo | Morale : 50 | Team Overall : 58
Next Games #724 vs Stars
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Peter HollandXX100.006772907273637157776156777565656450620
2Josh LeivoX100.005740887165574477576557702550506350600
3Brett Pollock (R)XX100.007773876873666957505158645544446150580
4Dennis Yan (R)X100.007368866568697258505161625844446250580
5Hunter SmithX100.007881726381596152505247634544445550550
6Zac LarrazaX100.008072996572495146503848634644445350520
7Filip Hronek (R)X100.006964817264788456254948604644445850600
8Aaron NessX100.007166846966697354255241613948485550580
9Joe HickettsX100.007161946661788746253641583944445350570
10Emil Johansson (R)X100.007469876869657046253740603844445250560
11Keaton Thompson (R)X100.007267856267677247253841593944445250550
12Jan KostalekX100.007368866468606446252849594744445350540
13Adam Ollas Mattsson (R)X100.008178876578505341252839623744445050540
Scratches
1Mason Marchment (R)X100.008077885977575854505747654544445750550
2Eric RoyX100.00607068625856576425575162504848150560
TEAM AVERAGE100.00726885666963665339474863464646535057
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Jared Coreau100.00647493936368596963623045456550650
2Marek Langhamer100.00664961727065727571713044446750640
3Connor Ingram (R)100.00636986766167626965643044446450630
4Eric Comrie100.00647290626468566763623044446450610
5Joonas Korpisalo100.00555857755852525463554951515650560
6Jack Flinn100.00454455924343505246473044444750510
TEAM AVERAGE100.0060617478606159646260334545615060
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dennis YanMonsters (CLB)LW461616321276602121213861567.51%1763513.8100000000043043.90%414112011.0123237847
2Hunter SmithMonsters (CLB)RW4641519111036554317726455.19%1864814.1000011000101134.78%461010000.5912436490
3Filip HronekMonsters (CLB)D46134-56955152824884.17%3063113.730000000004100.00%0222000.1313155214
4Aaron NessMonsters (CLB)D46033-340401616151280.00%2563813.890000000004000.00%0129000.0911215133
5Emil JohanssonMonsters (CLB)D46011-51010274020.00%102164.700000000000000.00%006000.0911002110
6Joe HickettsMonsters (CLB)D46000455343010.00%114369.500000000000000.00%009000.0001010051
7Keaton ThompsonMonsters (CLB)D46000-62525630140.00%122144.670000000000000.00%016000.0001113111
Team Total or Average32221385983282601171103361332246.25%123342210.63000110001145139.08%875594010.34612101428172416
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marek LanghamerMonsters (CLB)1310300.9242.147560127355210000.615131313721
Team Total or Average1310300.9242.147560127355210000.615131313721


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Aaron NessMonsters (CLB)D271991-05-18No184 Lbs5 ft10NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Adam Ollas MattssonMonsters (CLB)D221996-07-30Yes216 Lbs6 ft5NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Brett PollockMonsters (CLB)LW/RW221996-03-17Yes195 Lbs6 ft3NoNoNo3RFAPro & Farm850,000$0$0$NoLink
Connor IngramMonsters (CLB)G211997-03-31Yes204 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Dennis YanMonsters (CLB)LW211997-04-14Yes197 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Emil JohanssonMonsters (CLB)D221996-05-06Yes190 Lbs5 ft11NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Eric ComrieMonsters (CLB)G231995-07-05No175 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Eric RoyMonsters (CLB)D241994-10-24No181 Lbs6 ft3NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Filip HronekMonsters (CLB)D211997-11-02Yes163 Lbs6 ft0NoNoNo3RFAPro & Farm850,000$0$0$NoLink
Hunter SmithMonsters (CLB)RW231995-09-10No208 Lbs6 ft7NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Jack FlinnMonsters (CLB)G231995-12-20No223 Lbs6 ft8NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Jan KostalekMonsters (CLB)D231995-02-16No181 Lbs6 ft1NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Jared CoreauMonsters (CLB)G271991-11-05No235 Lbs6 ft4NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Joe HickettsMonsters (CLB)D221996-05-03No175 Lbs5 ft8NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Joonas KorpisaloMonsters (CLB)G241994-04-28No190 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Josh LeivoMonsters (CLB)LW251993-05-26No205 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Keaton ThompsonMonsters (CLB)D231995-09-13Yes182 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Marek LanghamerMonsters (CLB)G241994-07-21No193 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Mason MarchmentMonsters (CLB)LW231995-03-06Yes201 Lbs6 ft4NoNoNo2RFAPro & Farm767,000$0$0$NoLink
Peter HollandMonsters (CLB)C/LW271992-01-14No200 Lbs6 ft2NoNoNo1RFAPro & Farm1,250,000$0$0$NoLink
Zac LarrazaMonsters (CLB)LW251993-02-25No194 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2123.43195 Lbs6 ft21.67691,286$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Dennis YanHunter Smith30122
320122
4Dennis YanHunter Smith10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Filip HronekAaron Ness30122
3Joe Hicketts20122
4Keaton ThompsonEmil Johansson10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Dennis YanHunter Smith40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Filip HronekAaron Ness40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Dennis Yan40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Filip HronekAaron Ness40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Filip HronekAaron Ness40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Dennis Yan40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Filip HronekAaron Ness40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, Hunter Smith, , Hunter Smith
Extra Defensemen
Normal PowerPlayPenalty Kill
, Joe Hicketts, Joe Hicketts,
Penalty Shots
, , , Dennis Yan,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals10000010321000000000001000001032121.000336002345531330229384437283212214200.00%110.00%029671141.63%35477945.44%33872146.88%11418201032343611295
2Americans11000000624110000006240000000000021.0006121800234553132122938443728321127124375.00%10100.00%029671141.63%35477945.44%33872146.88%11418201032343611295
3Bears1010000013-2000000000001010000013-200.0001230023455313302293844372823121315200.00%4175.00%029671141.63%35477945.44%33872146.88%11418201032343611295
4Bruins21100000440000000000002110000044020.50048120023455313382293844372850242118300.00%3166.67%029671141.63%35477945.44%33872146.88%11418201032343611295
5Checkers1010000014-3000000000001010000014-300.00012300234553131522938443728291029122150.00%7185.71%029671141.63%35477945.44%33872146.88%11418201032343611295
6Comets300020011091200020007521000000134-150.83310203000234553136822938443728812495346116.67%10190.00%029671141.63%35477945.44%33872146.88%11418201032343611295
7Condors11000000321000000000001100000032121.0003690023455313212293844372829141194250.00%3233.33%029671141.63%35477945.44%33872146.88%11418201032343611295
8Crunch11000000431110000004310000000000021.000481200234553132422938443728184109500.00%5180.00%029671141.63%35477945.44%33872146.88%11418201032343611295
9Devils11000000101110000001010000000000021.000123012345531329229384437281761584125.00%000.00%029671141.63%35477945.44%33872146.88%11418201032343611295
10Falcons1010000023-1000000000001010000023-100.00024600234553131922938443728321118135120.00%4250.00%029671141.63%35477945.44%33872146.88%11418201032343611295
11Griffins4220000014140312000001213-11100000021140.500142741002345531383229384437281224163449222.22%10280.00%129671141.63%35477945.44%33872146.88%11418201032343611295
12Gulls22000000835110000004311100000040441.0008152301234553135822938443728412014269222.22%20100.00%029671141.63%35477945.44%33872146.88%11418201032343611295
13Heat3010110067-1201010005501000010012-130.50061117002345531355229384437281032436336233.33%80100.00%129671141.63%35477945.44%33872146.88%11418201032343611295
14Ice Hogs31200000610-4110000003212020000038-520.3336111700234553134822938443728682437359111.11%6183.33%029671141.63%35477945.44%33872146.88%11418201032343611295
15Marlies11000000211110000002110000000000021.0002460023455313252293844372815810174125.00%5180.00%029671141.63%35477945.44%33872146.88%11418201032343611295
16Moose10001000431000000000001000100043121.00048120023455313252293844372831113310400.00%4175.00%129671141.63%35477945.44%33872146.88%11418201032343611295
17Penguins11000000211000000000001100000021121.000246002345531321229384437283015473266.67%2150.00%029671141.63%35477945.44%33872146.88%11418201032343611295
18Phantoms2020000038-52020000038-50000000000000.00036900234553134322938443728541933279111.11%9544.44%029671141.63%35477945.44%33872146.88%11418201032343611295
19Pirates1010000013-2000000000001010000013-200.0001231023455313242293844372833121113400.00%3166.67%029671141.63%35477945.44%33872146.88%11418201032343611295
20Rampage320010001046210010006331100000041361.000102030002345531310922938443728741632495240.00%6350.00%029671141.63%35477945.44%33872146.88%11418201032343611295
21Senators2020000069-32020000069-30000000000000.00061218002345531355229384437286019292410110.00%7442.86%029671141.63%35477945.44%33872146.88%11418201032343611295
22Sound Tigers11000000321110000003210000000000021.000358002345531318229384437282411181211100.00%40100.00%029671141.63%35477945.44%33872146.88%11418201032343611295
23Stars11000000321000000000001100000032121.0003690023455313242293844372822111094125.00%000.00%029671141.63%35477945.44%33872146.88%11418201032343611295
Total462017051211281217231270400073611223810011215560-5560.609128244372122345531310622293844372812274397565561453020.69%1303870.77%329671141.63%35477945.44%33872146.88%11418201032343611295
25Wild31200000813-51100000032120200000511-620.33381624002345531372229384437285811772815320.00%7442.86%029671141.63%35477945.44%33872146.88%11418201032343611295
26Wolves31100010871110000003212010001055040.667814220023455313672293844372810341744810220.00%12558.33%029671141.63%35477945.44%33872146.88%11418201032343611295
27Wolves22000000927110000005141100000041341.000916250023455313402293844372846283430600.00%70100.00%029671141.63%35477945.44%33872146.88%11418201032343611295
_Since Last GM Reset462017051211281217231270400073611223810011215560-5560.609128244372122345531310622293844372812274397565561453020.69%1303870.77%329671141.63%35477945.44%33872146.88%11418201032343611295
_Vs Conference301390412190781214730400048361216660012142420400.66790169259012345531369422938443728811277503372901921.11%762172.37%229671141.63%35477945.44%33872146.88%11418201032343611295
_Vs Division17650002051438642000002010101123000203133-2160.471519414500234553134152293844372843415429922355916.36%431565.12%129671141.63%35477945.44%33872146.88%11418201032343611295

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4656W11282443721062122743975655612
All Games
GPWLOTWOTL SOWSOLGFGA
4620175121128121
Home Games
GPWLOTWOTL SOWSOLGFGA
2312740007361
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2381011215560
Last 10 Games
WLOTWOTL SOWSOL
540100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1453020.69%1303870.77%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
2293844372823455313
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
29671141.63%35477945.44%33872146.88%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11418201032343611295


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-023Monsters4Wolves3WXXBoxScore
4 - 2018-10-0522Griffins1Monsters4WBoxScore
6 - 2018-10-0736Monsters3 Admirals2WXXBoxScore
8 - 2018-10-0950Monsters3Wild7LBoxScore
9 - 2018-10-1060Wolves1Monsters5WBoxScore
11 - 2018-10-1274Monsters4Wolves1WBoxScore
13 - 2018-10-1491Ice Hogs2Monsters3WBoxScore
15 - 2018-10-16106Monsters2Griffins1WBoxScore
17 - 2018-10-18118Senators5Monsters3LBoxScore
20 - 2018-10-21142Monsters4Gulls0WBoxScore
21 - 2018-10-22153Rampage2Monsters3WXBoxScore
24 - 2018-10-25170Monsters0Ice Hogs4LBoxScore
25 - 2018-10-26182Heat1Monsters2WXBoxScore
29 - 2018-10-30206Comets3Monsters4WXBoxScore
31 - 2018-11-01227Phantoms3Monsters2LBoxScore
33 - 2018-11-03237Monsters3Condors2WBoxScore
35 - 2018-11-05244Monsters2Penguins1WBoxScore
37 - 2018-11-07259Monsters1Bruins2LBoxScore
39 - 2018-11-09273Gulls3Monsters4WBoxScore
41 - 2018-11-11290Monsters1Pirates3LBoxScore
43 - 2018-11-13304Sound Tigers2Monsters3WBoxScore
45 - 2018-11-15324Monsters4Moose3WXBoxScore
46 - 2018-11-16336Crunch3Monsters4WBoxScore
49 - 2018-11-19351Monsters3Comets4LXXBoxScore
51 - 2018-11-21365Comets2Monsters3WXBoxScore
53 - 2018-11-23381Monsters3Stars2WBoxScore
55 - 2018-11-25398Rampage1Monsters3WBoxScore
57 - 2018-11-27414Monsters1Bears3LBoxScore
59 - 2018-11-29426Monsters2Falcons3LBoxScore
60 - 2018-11-30433Heat4Monsters3LBoxScore
64 - 2018-12-04457Senators4Monsters3LBoxScore
66 - 2018-12-06479Monsters3Ice Hogs4LBoxScore
68 - 2018-12-08487Phantoms5Monsters1LBoxScore
73 - 2018-12-13515Monsters3Bruins2WBoxScore
74 - 2018-12-14522Griffins4Monsters3LBoxScore
77 - 2018-12-17544Wild2Monsters3WBoxScore
79 - 2018-12-19561Monsters1Heat2LXBoxScore
81 - 2018-12-21576Marlies1Monsters2WBoxScore
85 - 2018-12-25602Griffins8Monsters5LBoxScore
86 - 2018-12-26615Monsters1Wolves2LBoxScore
88 - 2018-12-28631Monsters4Rampage1WBoxScore
90 - 2018-12-30641Wolves2Monsters3WBoxScore
92 - 2019-01-01665Americans2Monsters6WBoxScore
94 - 2019-01-03677Monsters2Wild4LBoxScore
96 - 2019-01-05690Monsters1Checkers4LBoxScore
98 - 2019-01-07702Devils0Monsters1WBoxScore
100 - 2019-01-09724Stars-Monsters-
102 - 2019-01-11739Monsters-Wolves-
104 - 2019-01-13753Monsters-Gulls-
105 - 2019-01-14762Wolves-Monsters-
108 - 2019-01-17784Barracuda-Monsters-
110 - 2019-01-19794Monsters-IceCaps-
112 - 2019-01-21807Monsters-Wolves-
114 - 2019-01-23825Condors-Monsters-
117 - 2019-01-26847Reign-Monsters-
119 - 2019-01-28859Monsters-Barracuda-
121 - 2019-01-30872Monsters-Griffins-
123 - 2019-02-01882Monsters-Barracuda-
124 - 2019-02-02893Reign-Monsters-
128 - 2019-02-06915Stars-Monsters-
131 - 2019-02-09939 Admirals-Monsters-
134 - 2019-02-12954Monsters-Reign-
136 - 2019-02-14973Ice Hogs-Monsters-
138 - 2019-02-16983Monsters-Wolf Pack-
140 - 2019-02-181003Wolves-Monsters-
141 - 2019-02-191010Monsters- Admirals-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231038Monsters-Crunch-
146 - 2019-02-241044Condors-Monsters-
150 - 2019-02-281072 Admirals-Monsters-
152 - 2019-03-021084Monsters-Marlies-
154 - 2019-03-041096Ice Hogs-Monsters-
156 - 2019-03-061113Monsters-Wolves-
159 - 2019-03-091128Falcons-Monsters-
161 - 2019-03-111143Monsters-Condors-
163 - 2019-03-131152Monsters- Admirals-
165 - 2019-03-151168Falcons-Monsters-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
844,433$ 1,451,700$ 911,700$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 842,943$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 8,641$ 596,229$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018462017051211281217231270400073611223810011215560-556128244372122345531310622293844372812274397565561453020.69%1303870.77%329671141.63%35477945.44%33872146.88%11418201032343611295
Total Regular Season462017051211281217231270400073611223810011215560-556128244372122345531310622293844372812274397565561453020.69%1303870.77%329671141.63%35477945.44%33872146.88%11418201032343611295