Gulls

GP: 46 | W: 26 | L: 18 | OTL: 2 | P: 54
GF: 177 | GA: 156 | PP%: 34.01% | PK%: 70.37%
GM : Justin Lewis | Morale : 50 | Team Overall : 58
Next Games #717 vs Devils
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nick CousinsX100.008153867561648364496070696761626950640
2Brendan GaunceXX100.007844917176656962485560872557576750630
3Lukas SedlakX100.008055877672547560805858752557576550620
4Milan MichalekX100.007579668479545556504951714879835850610
5Remi ElieX100.007944917275568860356058642555556450610
6Dominic TurgeonX100.007873896673828858735358655544446350600
7Mikhail Vorobyev (R)X100.008176916576666859745756665344446250590
8Chase De LeoX100.006962866262788358735656605344446150580
9Michael AmadioX100.006542927371546863586060542547476250580
10Eric Cornel (R)XX100.007772896272747954684756635344446050570
11Connor CarrickX100.007355837768677463255350612561616150620
12Devon Toews (R)X100.007568918068676962255257645444446450620
13Brendan Guhle (R)X100.006742837573755868256347622546466050610
14Gustav OlofssonX100.006742897374607360255547702549496050610
15Robbie RussoX100.007170747470839153254645604345455650610
16Brandon Crawley (R)X100.008075916675687253254052644944445950590
Scratches
1Justin AugerX100.008687856487737855505056685344446250590
2Nick PaulXX100.008045997175518458335059522547476150570
3Clark Bishop (R)X100.007570866170667054685647624544445750560
4Jens Looke (R)XX100.007668936568646851504948624644445650550
5Jaedon Descheneau (R)XX100.007265896265484657715356615344445950540
6Dylan Sadowy (R)X100.007268806668474944503844584244445050500
7Kyle Capobianco (R)X100.007166826466717555255640603844445550580
8Philip SamuelssonX100.007572836072778549254141613944445350580
9Niklas Hansson (R)X100.007267836567687446253739593744445250560
10Michael PaliottaX100.008177896677545743253140623844445050550
11Petteri LindbohmX100.007474756974565945253440603847475150550
12Tyler LewingtonX100.006269476269788746253640543844444950550
TEAM AVERAGE100.00756485697265725644505163414849595058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Connor Knapp97.0052687469616859645959455555150610
2Eamon McAdam100.00614961806460646864643044446250610
Scratches
1Chris Driedger100.00485366804648505448483044444950520
TEAM AVERAGE99.0054576776575958625757354848375058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Lukas SedlakGulls (ANA)C4630255522674555832394412112.55%2573115.89651123410000145258.18%10334622001.50011261144
2Milan MichalekGulls (ANA)LW46192342161327050241455812213.10%1363013.71651116420000154143.08%655526011.3300752531
3Justin AugerGulls (ANA)RW41141933-6112804216171621098.19%1577518.916101624113000000139.39%333920110.8500619313
4Devon ToewsGulls (ANA)D2491928-26650132384423510.71%3261825.78710172465000661200.00%02231000.9101424223
5Remi ElieGulls (ANA)LW46121527295283016253957.41%1359512.95415811000082038.89%183421000.9100010234
6Brendan GuhleGulls (ANA)D46313161115514275720295.26%3370415.32303622000033100.00%0436000.4500010004
7Dominic TurgeonGulls (ANA)C46410145424030439229824.35%1058412.70101140000171055.06%2672311000.4812305022
8Eric CornelGulls (ANA)C/RW464101412987032265818236.90%1459913.02011344000001040.38%521424000.4700347012
9Gustav OlofssonGulls (ANA)D460121218161015284114160.00%2777116.76022234011145000.00%01041000.3100011013
10Brendan GaunceGulls (ANA)C/LW95611-9215151034132414.71%620022.231344120001161055.56%9710011.1000010100
11Nick CousinsGulls (ANA)C99211-4951594082022.50%721323.783039130000170044.23%208712011.0300010120
12Chase De LeoGulls (ANA)C46268-712101210249168.33%63146.84033539000030057.38%6176000.5100002001
13Mikhail VorobyevGulls (ANA)C46134-214107111810125.56%42044.4400000000000055.56%13525000.3900101010
14Brandon CrawleyGulls (ANA)D46123-2544014713477.69%234419.600000100008000.00%0125000.1400251100
15Robbie RussoGulls (ANA)D46022-34420161018540.00%2452411.390000500005000.00%0118000.0800103000
16Connor CarrickGulls (ANA)D1000-2275000010.00%12121.330000100002000.00%002000.0000010000
17Philip SamuelssonGulls (ANA)D20000-360346010.00%61005.020000500004000.00%001000.0000000000
Team Total or Average6101131672804674447036136112023897179.40%259803013.16374077125460011825417454.44%1881272311140.7014282541262027
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Connor KnappGulls (ANA)37181420.8833.33201600112955511100.8336370121
2Eamon McAdamGulls (ANA)168400.8973.237434040388227010.6673946020
Team Total or Average53261820.8873.302760401521343738110.77894646141


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Brandon CrawleyGulls (ANA)D211997-02-02Yes203 Lbs6 ft2NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Brendan GaunceGulls (ANA)C/LW241994-03-24No217 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Brendan GuhleGulls (ANA)D211997-07-29Yes186 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Chase De LeoGulls (ANA)C231995-10-24No185 Lbs5 ft9NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Chris DriedgerGulls (ANA)G241994-05-18No205 Lbs6 ft4NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Clark BishopGulls (ANA)C221996-03-28Yes194 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Connor CarrickGulls (ANA)D241994-04-13No195 Lbs5 ft11NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Connor KnappGulls (ANA)G281990-05-01No206 Lbs6 ft6NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Devon ToewsGulls (ANA)D241994-02-20Yes181 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Dominic TurgeonGulls (ANA)C221996-02-24No196 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Dylan SadowyGulls (ANA)LW221996-04-01Yes180 Lbs6 ft1NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Eamon McAdamGulls (ANA)G241994-09-23No199 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Eric CornelGulls (ANA)C/RW221996-04-10Yes194 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Gustav OlofssonGulls (ANA)D241994-11-30No195 Lbs6 ft3NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Jaedon DescheneauGulls (ANA)C/RW231995-02-21Yes186 Lbs5 ft9NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Jens LookeGulls (ANA)LW/RW211997-04-11Yes180 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Justin AugerGulls (ANA)RW241994-05-14No229 Lbs6 ft7NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Kyle CapobiancoGulls (ANA)D211997-08-13Yes178 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Lukas SedlakGulls (ANA)C251993-02-25No203 Lbs6 ft0NoNoNo2RFAPro & Farm825,000$0$0$NoLink
Michael AmadioGulls (ANA)C221996-05-13No190 Lbs6 ft1NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Michael PaliottaGulls (ANA)D251993-04-05No207 Lbs6 ft4NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Mikhail VorobyevGulls (ANA)C221997-01-05Yes207 Lbs6 ft2NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Milan MichalekGulls (ANA)LW331985-07-15 1:46:14 AMNo216 Lbs6 ft2NoNoNo2UFAPro & Farm4,000,000$0$0$NoLink
Nick CousinsGulls (ANA)C251993-07-19No188 Lbs5 ft10NoNoNo2RFAPro & Farm1,000,000$0$0$NoLink
Nick PaulGulls (ANA)C/LW231995-03-20No230 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Niklas HanssonGulls (ANA)D241995-01-08Yes184 Lbs6 ft0NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Petteri LindbohmGulls (ANA)D251993-09-22No198 Lbs6 ft3NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Philip SamuelssonGulls (ANA)D271991-07-26No194 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Remi ElieGulls (ANA)LW231995-04-15No210 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Robbie RussoGulls (ANA)D251993-02-15No189 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Tyler LewingtonGulls (ANA)D241994-12-05No189 Lbs6 ft1NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3123.77197 Lbs6 ft21.87808,871$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Milan MichalekLukas SedlakEric Cornel30122
3Remi ElieDominic Turgeon20122
4Mikhail VorobyevLukas Sedlak10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Gustav OlofssonBrendan Guhle30122
3Robbie RussoBrandon Crawley20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Milan MichalekLukas SedlakEric Cornel40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Gustav OlofssonBrendan Guhle40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Lukas SedlakMilan Michalek40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Gustav OlofssonBrendan Guhle40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Gustav OlofssonBrendan Guhle40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Lukas SedlakMilan Michalek40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Gustav OlofssonBrendan Guhle40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Chase De Leo, Remi Elie, Dominic TurgeonChase De Leo, Remi ElieDominic Turgeon
Extra Defensemen
Normal PowerPlayPenalty Kill
Robbie Russo, Brandon Crawley, Robbie RussoBrandon Crawley,
Penalty Shots
, , Lukas Sedlak, Milan Michalek, Remi Elie
Goalie
#1 : Connor Knapp, #2 : Eamon McAdam


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans1010000023-1000000000001010000023-100.0002460029776663939157656519194511100.00%000.00%048393951.44%47292051.30%42677255.18%10546971053343681345
2Barracuda420010102414102000101086222000000168881.0002443670029776661853915765651912544506110550.00%15846.67%048393951.44%47292051.30%42677255.18%10546971053343681345
3Bears11000000422110000004220000000000021.0004610002977666473915765651932156194125.00%30100.00%148393951.44%47292051.30%42677255.18%10546971053343681345
4Checkers1010000005-5000000000001010000005-500.00000000297766612391576565194211739000.00%40100.00%048393951.44%47292051.30%42677255.18%10546971053343681345
5Comets21000001770000000000002100000177030.75071219002977666643915765651962272419600.00%70100.00%048393951.44%47292051.30%42677255.18%10546971053343681345
6Condors31200000990211000007521010000024-220.3339162500297766694391576565197224784213323.08%9366.67%048393951.44%47292051.30%42677255.18%10546971053343681345
7Crunch11000000312000000000001100000031221.0003690029776662439157656519176985240.00%20100.00%048393951.44%47292051.30%42677255.18%10546971053343681345
8Devils10001000431100010004310000000000021.000461000297766624391576565194071593133.33%50100.00%048393951.44%47292051.30%42677255.18%10546971053343681345
9Falcons412010001215-32020000029-721001000106440.5001219310029776661143915765651912137110715360.00%15380.00%048393951.44%47292051.30%42677255.18%10546971053343681345
10Griffins22000000853110000004221100000043141.000813210029776665339157656519732135194250.00%5180.00%048393951.44%47292051.30%42677255.18%10546971053343681345
11Heat11000000532000000000001100000053221.0005813002977666313915765651938729113133.33%7271.43%048393951.44%47292051.30%42677255.18%10546971053343681345
12Ice Hogs1010000012-1000000000001010000012-100.0001120029776664139157656519204197200.00%20100.00%048393951.44%47292051.30%42677255.18%10546971053343681345
13Marlies21100000853211000008530000000000020.5008122000297766667391576565194522352910440.00%60100.00%048393951.44%47292051.30%42677255.18%10546971053343681345
14Monsters2020000038-51010000004-41010000034-100.000347002977666413915765651958224818200.00%9277.78%048393951.44%47292051.30%42677255.18%10546971053343681345
15Pirates2110000014104110000008351010000067-120.5001425390029776669039157656519632443356583.33%9544.44%148393951.44%47292051.30%42677255.18%10546971053343681345
16Rampage210001007521000010034-11100000041330.750714210029776669239157656519501540357228.57%5340.00%048393951.44%47292051.30%42677255.18%10546971053343681345
17Reign21100000972000000000002110000097220.500915240029776664839157656519401854205240.00%7271.43%148393951.44%47292051.30%42677255.18%10546971053343681345
18Senators1010000047-3000000000001010000047-300.0004711002977666383915765651939852152150.00%6433.33%048393951.44%47292051.30%42677255.18%10546971053343681345
19Sound Tigers11000000716000000000001100000071621.000712190029776664539157656519357271710660.00%10100.00%048393951.44%47292051.30%42677255.18%10546971053343681345
20Stars421000101517-2311000101215-31100000032160.7501524390029776661243915765651912845664115426.67%13376.92%048393951.44%47292051.30%42677255.18%10546971053343681345
Total462118031211771562123810021207779-223138010011007723540.58717729947610297766615443915765651913574639925941475034.01%1624870.37%348393951.44%47292051.30%42677255.18%10546971053343681345
22Wild220000001248110000003121100000093641.0001217290029776665839157656519368162611327.27%3166.67%048393951.44%47292051.30%42677255.18%10546971053343681345
23Wolf Pack11000000624110000006240000000000021.0006111700297766633391576565192692120500.00%3166.67%048393951.44%47292051.30%42677255.18%10546971053343681345
24Wolves31200000911-22020000048-41100000053220.333916250029776661093915765651911552822710330.00%16662.50%048393951.44%47292051.30%42677255.18%10546971053343681345
25Wolves20200000410-620200000410-60000000000000.00048121029776667139157656519612655258225.00%10460.00%048393951.44%47292051.30%42677255.18%10546971053343681345
_Since Last GM Reset462118031211771562123810021207779-223138010011007723540.58717729947610297766615443915765651913574639925941475034.01%1624870.37%348393951.44%47292051.30%42677255.18%10546971053343681345
_Vs Conference3415130212112511781749011204764-171711401001785325400.5881252103351029776661125391576565199993507064221013029.70%1233869.11%148393951.44%47292051.30%42677255.18%10546971053343681345
_Vs Division166402020665511613010201720-3105101000493514200.6256611317900297766653639157656519458157345224421433.33%601870.00%148393951.44%47292051.30%42677255.18%10546971053343681345

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4654W21772994761544135746399259410
All Games
GPWLOTWOTL SOWSOLGFGA
4621183121177156
Home Games
GPWLOTWOTL SOWSOLGFGA
2381021207779
Visitor Games
GPWLOTWOTL SOWSOLGFGA
23138100110077
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1475034.01%1624870.37%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
391576565192977666
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
48393951.44%47292051.30%42677255.18%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10546971053343681345


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0313Gulls5Heat3WBoxScore
4 - 2018-10-0525Gulls2Reign6LBoxScore
5 - 2018-10-0629Wolves5Gulls1LBoxScore
8 - 2018-10-0949Stars2Gulls3WBoxScore
10 - 2018-10-1167Gulls4Comets3WBoxScore
12 - 2018-10-1382Griffins2Gulls4WBoxScore
14 - 2018-10-1595Gulls11Barracuda5WBoxScore
16 - 2018-10-17113Barracuda3Gulls4WXBoxScore
18 - 2018-10-19128Gulls7Reign1WBoxScore
20 - 2018-10-21142Monsters4Gulls0LBoxScore
23 - 2018-10-24164Falcons4Gulls1LBoxScore
26 - 2018-10-27184Gulls4Falcons3WXBoxScore
28 - 2018-10-29201Marlies4Gulls2LBoxScore
31 - 2018-11-01222Condors4Gulls2LBoxScore
32 - 2018-11-02233Gulls9Wild3WBoxScore
35 - 2018-11-05251Gulls0Checkers5LBoxScore
37 - 2018-11-07262Stars8Gulls3LBoxScore
39 - 2018-11-09273Gulls3Monsters4LBoxScore
41 - 2018-11-11289Gulls7Sound Tigers1WBoxScore
42 - 2018-11-12301Marlies1Gulls6WBoxScore
45 - 2018-11-15323Rampage4Gulls3LXBoxScore
47 - 2018-11-17338Gulls5Wolves3WBoxScore
49 - 2018-11-19352Gulls6Pirates7LBoxScore
50 - 2018-11-20362Wolf Pack2Gulls6WBoxScore
53 - 2018-11-23382Gulls3Comets4LXXBoxScore
54 - 2018-11-24394Wolves5Gulls3LBoxScore
57 - 2018-11-27413Condors1Gulls5WBoxScore
61 - 2018-12-01442Falcons5Gulls1LBoxScore
63 - 2018-12-03454Gulls2Condors4LBoxScore
65 - 2018-12-05471Barracuda3Gulls4WXXBoxScore
67 - 2018-12-07480Gulls5Barracuda3WBoxScore
71 - 2018-12-11503Gulls4Senators7LBoxScore
72 - 2018-12-12512Wolves5Gulls3LBoxScore
75 - 2018-12-15532Gulls4Griffins3WBoxScore
76 - 2018-12-16542Devils3Gulls4WXBoxScore
79 - 2018-12-19563Gulls1Ice Hogs2LBoxScore
81 - 2018-12-21572Wild1Gulls3WBoxScore
83 - 2018-12-23587Gulls2Americans3LBoxScore
85 - 2018-12-25604Bears2Gulls4WBoxScore
87 - 2018-12-27617Gulls3Crunch1WBoxScore
88 - 2018-12-28633Stars5Gulls6WXXBoxScore
91 - 2018-12-31648Gulls6Falcons3WBoxScore
92 - 2019-01-01663Gulls3Stars2WBoxScore
93 - 2019-01-02672Wolves3Gulls1LBoxScore
96 - 2019-01-05693Gulls4Rampage1WBoxScore
97 - 2019-01-06701Pirates3Gulls8WBoxScore
100 - 2019-01-09717Gulls-Devils-
101 - 2019-01-10732Wolves-Gulls-
104 - 2019-01-13753Monsters-Gulls-
106 - 2019-01-15768Gulls-Bruins-
107 - 2019-01-16775Gulls-Wolves-
110 - 2019-01-19793Falcons-Gulls-
112 - 2019-01-21811Gulls-Heat-
114 - 2019-01-23820Gulls-Ice Hogs-
115 - 2019-01-24830Rampage-Gulls-
118 - 2019-01-27852IceCaps-Gulls-
120 - 2019-01-29861Gulls- Admirals-
121 - 2019-01-30873Gulls-Stars-
124 - 2019-02-02889Moose-Gulls-
126 - 2019-02-04904Gulls-Moose-
128 - 2019-02-06914Gulls-Wild-
130 - 2019-02-08928Comets-Gulls-
132 - 2019-02-10946Gulls-Phantoms-
134 - 2019-02-12959Griffins-Gulls-
135 - 2019-02-13967Gulls-Barracuda-
138 - 2019-02-16986Gulls-Bruins-
139 - 2019-02-17992Heat-Gulls-
142 - 2019-02-201019 Admirals-Gulls-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221031Gulls-Penguins-
147 - 2019-02-251050Ice Hogs-Gulls-
149 - 2019-02-271068Gulls-Reign-
151 - 2019-03-011081Griffins-Gulls-
154 - 2019-03-041101Gulls-Reign-
156 - 2019-03-061114Reign-Gulls-
161 - 2019-03-111145Reign-Gulls-
165 - 2019-03-151164 Admirals-Gulls-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,463,738$ 2,507,500$ 2,042,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,463,738$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 14,926$ 1,029,894$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018462118031211771562123810021207779-2231380100110077235417729947610297766615443915765651913574639925941475034.01%1624870.37%348393951.44%47292051.30%42677255.18%10546971053343681345
Total Regular Season462118031211771562123810021207779-2231380100110077235417729947610297766615443915765651913574639925941475034.01%1624870.37%348393951.44%47292051.30%42677255.18%10546971053343681345