Stars

GP: 46 | W: 16 | L: 25 | OTL: 5 | P: 37
GF: 130 | GA: 165 | PP%: 20.31% | PK%: 67.32%
GM : Hans Pettersson | Morale : 50 | Team Overall : 58
Next Games #724 vs Monsters
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Mario KempeXXX100.007643927768587756526060702547476650610
2Frank VatranoXXX100.007744778275576265505770552558586650610
3Connor BrickleyXX99.008458877070627258316459712552526650610
4Andrew AgozzinoXX100.006966776766808660755660615744446350600
5Peter CehlarikX100.007775816775666762505862655945456450600
6Stefan MatteauX100.008381876481778357504762695951516450600
7Anton BlidhXX100.007773856973808755504956645345456150590
8Lucas WallmarkX100.007743937665558257805059562545456250580
9Andy WelinskiX100.007572817372737760255253645044446250610
10Julian MelchioriX100.008481906881667148253941663946465550600
11Jarred TinordiX100.007986636586656949254241633944445350580
12Kyle BurroughsX100.007071676271798750254341593944445350580
13Alex LintuniemiX100.008585856485535451254741663944445550580
Scratches
1Jacob de La RoseXX100.008857847778627959746258702558596550630
2Andreas MartinsenXXX100.008685876885788458505158725559596450620
3Michael LattaX100.007374706574656856705651624844445850570
4Calvin Thurkauf (R)X100.007875856575768351644751634844445850570
5Mitch CallahanX100.007570856970687349504745614344445450550
6Manuel Wiederer (R)XX100.006964826564687254684756595344445850550
7Rich CluneX100.006472456272636751504747604559595350540
8Adam Gilmour (R)XX100.007974926174616549614646634444445550540
9Joseph LaBateX100.006474416574596152654654565144445450530
10Erik GustafssonX100.007343947174768072256556632554556650640
11Taylor ChorneyX91.227143897771614753255148752561626050620
12Luke WitkowskiX100.008399427178456152445048602555565650580
13Dylan McIlrathX100.007684576584697646253541613944445150570
14Clayton StonerX100.009046476868323050254845753744445350560
15Daniel Walcott (R)X100.006563696263687448253941563944445150540
TEAM AVERAGE99.65776876687465715546505264414848595058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Pheonix Copley96.00547088824956515852523044445550570
2Matt Hackett100.00494860664955505455543046465250520
Scratches
1Sean Maguire (R)100.00645265786763687267673044446550630
2Mason McDonald (R)100.00454759834344505246473044444750500
TEAM AVERAGE99.0053546877525555595555304545555056
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mario KempeStars (DAL)C/LW/RW46141630-3002025148531249.46%1059312.90011414000002155.26%384215001.0100000614
2Andreas MartinsenStars (DAL)C/LW/RW418192788955333211034687.27%1656513.790110120004160143.14%5612217000.9602227232
3Connor BrickleyStars (DAL)LW/RW46101525-421152823100317910.00%1047010.23224722000052031.50%4192214001.0601201155
4Frank VatranoStars (DAL)C/LW/RW2981220-6160301911146607.21%537512.93213515000040146.77%248375001.0700000340
5Andrew AgozzinoStars (DAL)C/LW4657123391518136219368.06%73607.8400000101131059.15%142105000.6700012230
6Jacob de La RoseStars (DAL)C/LW55611720111137111913.51%413226.40112380000120156.74%14174001.6711000202
7Stefan MatteauStars (DAL)LW464610-6714530295414347.41%104078.8600001000040031.82%22919000.4935225022
8Anton BlidhStars (DAL)LW/RW46639-216345262745122113.33%144249.24101211000000054.55%331410000.4200333011
9Erik GustafssonStars (DAL)D716702051322454.55%819728.22112212000319000.00%0220000.7100000000
10Peter CehlarikStars (DAL)LW46044-11571511106628480.00%53116.7700000000090033.33%12123000.2614012001
11Jarred TinordiStars (DAL)D46033-1016290279178140.00%2060613.1800004000012000.00%0126000.10002610001
12Alex LintuniemiStars (DAL)D4603316345885270.00%194058.800000000004000.00%008000.1500126021
13Taylor ChorneyStars (DAL)D61230204692211.11%1013021.7110129000013000.00%0111000.4600000000
14Julian MelchioriStars (DAL)D10011-53725399120.00%816516.5700006000111000.00%009000.1200221000
15Kyle BurroughsStars (DAL)D10011-31915333110.00%312812.820000200001000.00%003000.1600120000
16Andy WelinskiStars (DAL)D10011-616108710420.00%1217417.4200008000112000.00%009000.1100002000
17Lucas WallmarkStars (DAL)C10000-620226590.00%3868.6600000000000051.72%2951000.0000000000
Team Total or Average49662105167-626613752672468142755317.62%164553411.16871525131101101315443.71%1645184179000.60513152139162119
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pheonix CopleyStars (DAL)46142450.8693.482590011501147697100.286144636214
2Matt HackettStars (DAL)10000.9232.2227001139000.0000010000
Team Total or Average47142450.8703.462617011511160706100.286144646214


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam GilmourStars (DAL)C/RW241994-01-28Yes192 Lbs6 ft4NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Alex LintuniemiStars (DAL)D231995-09-22No231 Lbs6 ft4NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Andreas MartinsenStars (DAL)C/LW/RW281990-06-12No220 Lbs6 ft3NoNoNo4RFAPro & Farm675,000$0$0$NoLink
Andrew AgozzinoStars (DAL)C/LW281991-01-02No187 Lbs5 ft10NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Andy WelinskiStars (DAL)D251993-04-27No205 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Anton BlidhStars (DAL)LW/RW231995-03-14No201 Lbs6 ft0NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Calvin ThurkaufStars (DAL)C211997-06-27Yes204 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Clayton StonerStars (DAL)D321986-07-15 7:46:14 AMNo216 Lbs6 ft4NoNoNo1UFAPro & Farm3,250,000$0$0$NoLink
Connor BrickleyStars (DAL)LW/RW261992-02-25No203 Lbs6 ft0NoNoNo4RFAPro & Farm750,000$0$0$NoLink
Daniel WalcottStars (DAL)D241994-02-19Yes174 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Dylan McIlrathStars (DAL)D261992-04-20No236 Lbs6 ft5NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Erik GustafssonStars (DAL)D261992-03-13No176 Lbs6 ft0NoNoNo1RFAPro & Farm667,500$0$0$NoLink
Frank VatranoStars (DAL)C/LW/RW241994-03-14No201 Lbs5 ft9NoNoNo4RFAPro & Farm792,500$0$0$NoLink
Jacob de La RoseStars (DAL)C/LW231995-05-20No214 Lbs6 ft3NoNoNo4RFAPro & Farm950,000$0$0$NoLink
Jarred TinordiStars (DAL)D251993-02-20No230 Lbs6 ft6NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Joseph LaBateStars (DAL)C251993-04-16No210 Lbs6 ft5NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Julian MelchioriStars (DAL)D271991-12-06No214 Lbs6 ft5NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Kyle BurroughsStars (DAL)D231995-07-12No203 Lbs6 ft0NoNoNo2RFAPro & Farm630,000$0$0$NoLink
Lucas WallmarkStars (DAL)C231995-09-05No176 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Luke WitkowskiStars (DAL)D281990-04-14No217 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Manuel WiedererStars (DAL)C/RW221996-11-21Yes170 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Mario KempeStars (DAL)C/LW/RW301988-09-19No185 Lbs6 ft0NoNoNo4UFAPro & Farm850,000$0$0$NoLink
Mason McDonaldStars (DAL)G221996-04-23Yes200 Lbs6 ft4NoNoNo3RFAPro & Farm850,000$0$0$NoLink
Matt HackettStars (DAL)G271991-03-07No171 Lbs6 ft2NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Michael LattaStars (DAL)C271991-05-25No207 Lbs6 ft0NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Mitch CallahanStars (DAL)RW271991-08-17No190 Lbs6 ft0NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Peter CehlarikStars (DAL)LW231995-05-12No202 Lbs6 ft2NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Pheonix CopleyStars (DAL)G261992-01-17No196 Lbs6 ft4NoNoNo3RFAPro & Farm709,000$0$0$NoLink
Rich CluneStars (DAL)LW301988-07-15 7:46:14 PMNo207 Lbs5 ft10NoNoNo2UFAPro & Farm575,000$0$0$NoLink
Sean MaguireStars (DAL)G251993-02-02Yes202 Lbs6 ft2NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Stefan MatteauStars (DAL)LW231995-02-23No220 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Taylor Chorney (Out of Payroll)Stars (DAL)D301988-07-15 7:46:14 PMNo191 Lbs6 ft0NoNoNo1UFAPro & Farm800,000$0$0$YesLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3225.50202 Lbs6 ft22.41769,500$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Connor Brickley40122
2Mario KempeFrank VatranoAnton Blidh30122
3Stefan MatteauAndrew Agozzino20122
4Peter CehlarikLucas Wallmark10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Andy WelinskiJulian Melchiori30122
3Kyle BurroughsJarred Tinordi20122
4Alex Lintuniemi10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Connor Brickley60122
2Mario KempeFrank VatranoAnton Blidh40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Andy WelinskiJulian Melchiori40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Connor BrickleyFrank Vatrano40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Andy WelinskiJulian Melchiori40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Andy WelinskiJulian Melchiori40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Connor BrickleyFrank Vatrano40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Andy WelinskiJulian Melchiori40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Connor Brickley
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Connor Brickley
Extra Forwards
Normal PowerPlayPenalty Kill
Stefan Matteau, Andrew Agozzino, Peter CehlarikStefan Matteau, Andrew AgozzinoPeter Cehlarik
Extra Defensemen
Normal PowerPlayPenalty Kill
Kyle Burroughs, Jarred Tinordi, Alex LintuniemiKyle BurroughsJarred Tinordi, Alex Lintuniemi
Penalty Shots
, , Connor Brickley, Frank Vatrano, Mario Kempe
Goalie
#1 : Pheonix Copley, #2 : Matt Hackett


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals31200000913-42110000078-11010000025-320.33391726002255491098364491431348432453611327.27%10550.00%037081845.23%33773745.73%32076042.11%11468111015341635309
2Barracuda41200001717-102110000039-62010000148-430.37571219002255491012636449143134113411425219210.53%11645.45%037081845.23%33773745.73%32076042.11%11468111015341635309
3Bears1010000036-3000000000001010000036-300.00035800225549103336449143134481110134125.00%5260.00%037081845.23%33773745.73%32076042.11%11468111015341635309
4Bruins1010000035-21010000035-20000000000000.000369002255491028364491431342975321300.00%4175.00%037081845.23%33773745.73%32076042.11%11468111015341635309
5Checkers1010000015-4000000000001010000015-400.00012300225549102436449143134341221113133.33%3166.67%037081845.23%33773745.73%32076042.11%11468111015341635309
6Comets1010000024-2000000000001010000024-200.00024600225549102736449143134273216200.00%3166.67%037081845.23%33773745.73%32076042.11%11468111015341635309
7Condors2010010048-41000010023-11010000025-310.25048120022554910493644914313450167412400.00%7357.14%037081845.23%33773745.73%32076042.11%11468111015341635309
8Crunch10000010541000000000001000001054121.0005813002255491030364491431341632318200.00%4250.00%037081845.23%33773745.73%32076042.11%11468111015341635309
9Falcons5310001016106210000107343210000097280.8001624400022554910141364491431341303695631317.69%15286.67%037081845.23%33773745.73%32076042.11%11468111015341635309
10Griffins3110000110100211000008711000000123-130.50010182800225549109036449143134882537345120.00%6266.67%037081845.23%33773745.73%32076042.11%11468111015341635309
11Gulls41200001171521010000023-1311000011512330.37517294600225549101283644914313412446705413323.08%15473.33%037081845.23%33773745.73%32076042.11%11468111015341635309
12Ice Hogs2020000069-31010000034-11010000035-200.00061016002255491065364491431345815312522100.00%8362.50%037081845.23%33773745.73%32076042.11%11468111015341635309
13IceCaps1010000014-3000000000001010000014-300.000123002255491029364491431342989132150.00%20100.00%037081845.23%33773745.73%32076042.11%11468111015341635309
14Monsters1010000023-11010000023-10000000000000.0002460022554910223644914313424101813000.00%4175.00%037081845.23%33773745.73%32076042.11%11468111015341635309
15Moose11000000321110000003210000000000021.000369002255491025364491431343613873133.33%40100.00%037081845.23%33773745.73%32076042.11%11468111015341635309
16Phantoms10001000321000000000001000100032121.000369002255491033364491431342321017200.00%000.00%037081845.23%33773745.73%32076042.11%11468111015341635309
17Pirates2020000036-32020000036-30000000000000.0003690022554910523644914313451223626400.00%8187.50%237081845.23%33773745.73%32076042.11%11468111015341635309
18Rampage21100000912-3110000007431010000028-620.50091524002255491076364491431344412105246116.67%10550.00%137081845.23%33773745.73%32076042.11%11468111015341635309
19Reign3120000078-1211000005501010000023-120.3337142101225549106036449143134581067239222.22%11281.82%237081845.23%33773745.73%32076042.11%11468111015341635309
Total46122502124130165-3523713011106075-1523512010147090-20370.4021302313610122554910130236449143134124038410065571282620.31%1535067.32%537081845.23%33773745.73%32076042.11%11468111015341635309
21Wild31100001910-11010000003-32100000197230.50091625002255491054364491431345420613410440.00%13746.15%037081845.23%33773745.73%32076042.11%11468111015341635309
22Wolf Pack10001000321100010003210000000000021.0003690022554910213644914313426415152150.00%50100.00%037081845.23%33773745.73%32076042.11%11468111015341635309
23Wolves11000000523000000000001100000052321.000591400225549103136449143134301214213133.33%2150.00%037081845.23%33773745.73%32076042.11%11468111015341635309
24Wolves2020000028-62020000028-60000000000000.00024600225549106036449143134642441196116.67%3166.67%037081845.23%33773745.73%32076042.11%11468111015341635309
_Since Last GM Reset46122502124130165-3523713011106075-1523512010147090-20370.4021302313610122554910130236449143134124038410065571282620.31%1535067.32%537081845.23%33773745.73%32076042.11%11468111015341635309
_Vs Conference36111900114105129-2418610001104860-121859000045769-12290.40310518428901225549101027364491431349483028214161032120.39%1184363.56%337081845.23%33773745.73%32076042.11%11468111015341635309
_Vs Division1967000125362-9833000101923-41134000023439-5160.421539114401225549105313644914313450215246921060813.33%621870.97%237081845.23%33773745.73%32076042.11%11468111015341635309

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4637L213023136113021240384100655701
All Games
GPWLOTWOTL SOWSOLGFGA
4612252124130165
Home Games
GPWLOTWOTL SOWSOLGFGA
2371311106075
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2351210147090
Last 10 Games
WLOTWOTL SOWSOL
270001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1282620.31%1535067.32%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
3644914313422554910
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
37081845.23%33773745.73%32076042.11%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11468111015341635309


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0310Falcons1Stars4WBoxScore
4 - 2018-10-0526Stars4Falcons3WBoxScore
6 - 2018-10-0742Pirates4Stars2LBoxScore
8 - 2018-10-0949Stars2Gulls3LBoxScore
10 - 2018-10-1170Falcons2Stars3WXXBoxScore
14 - 2018-10-1597 Admirals4Stars2LBoxScore
15 - 2018-10-16104Stars2Reign3LBoxScore
18 - 2018-10-19125Stars3Barracuda6LBoxScore
19 - 2018-10-20136Griffins3Stars5WBoxScore
22 - 2018-10-23158Moose2Stars3WBoxScore
26 - 2018-10-27188Reign5Stars4LBoxScore
28 - 2018-10-29196Stars2Condors5LBoxScore
30 - 2018-10-31212Stars1Falcons3LBoxScore
31 - 2018-11-01226Barracuda7Stars0LBoxScore
35 - 2018-11-05249Wild3Stars0LBoxScore
37 - 2018-11-07262Stars8Gulls3WBoxScore
39 - 2018-11-09278Stars4Falcons1WBoxScore
40 - 2018-11-10287Wolves3Stars1LBoxScore
43 - 2018-11-13306Stars5Crunch4WXXBoxScore
44 - 2018-11-14317Reign0Stars1WBoxScore
47 - 2018-11-17342Condors3Stars2LXBoxScore
49 - 2018-11-19355Stars1Checkers5LBoxScore
51 - 2018-11-21368Stars3Phantoms2WXBoxScore
53 - 2018-11-23381Monsters3Stars2LBoxScore
55 - 2018-11-25400Stars1IceCaps4LBoxScore
56 - 2018-11-26409Pirates2Stars1LBoxScore
60 - 2018-11-30435Stars2Griffins3LXXBoxScore
61 - 2018-12-01443Wolf Pack2Stars3WXBoxScore
65 - 2018-12-05468Rampage4Stars7WBoxScore
67 - 2018-12-07481Stars2Rampage8LBoxScore
69 - 2018-12-09491Stars4Wild5LXXBoxScore
71 - 2018-12-11504 Admirals4Stars5WBoxScore
73 - 2018-12-13520Stars5Wild2WBoxScore
75 - 2018-12-15535Bruins5Stars3LBoxScore
77 - 2018-12-17549Stars1Barracuda2LXXBoxScore
79 - 2018-12-19562Stars2Comets4LBoxScore
81 - 2018-12-21573Griffins4Stars3LBoxScore
83 - 2018-12-23592Stars3Bears6LBoxScore
85 - 2018-12-25601Barracuda2Stars3WBoxScore
87 - 2018-12-27624Ice Hogs4Stars3LBoxScore
88 - 2018-12-28633Stars5Gulls6LXXBoxScore
90 - 2018-12-30643Stars3Ice Hogs5LBoxScore
92 - 2019-01-01663Gulls3Stars2LBoxScore
95 - 2019-01-04680Stars5Wolves2WBoxScore
97 - 2019-01-06696Wolves5Stars1LBoxScore
99 - 2019-01-08709Stars2 Admirals5LBoxScore
100 - 2019-01-09724Stars-Monsters-
101 - 2019-01-10733Pirates-Stars-
104 - 2019-01-13757Moose-Stars-
107 - 2019-01-16774Stars-Americans-
109 - 2019-01-18787Heat-Stars-
113 - 2019-01-22815Wolves-Stars-
116 - 2019-01-25840Ice Hogs-Stars-
120 - 2019-01-29866Stars-Americans-
121 - 2019-01-30873Gulls-Stars-
124 - 2019-02-02892Stars- Admirals-
126 - 2019-02-04902Comets-Stars-
128 - 2019-02-06915Stars-Monsters-
131 - 2019-02-09933Stars-Sound Tigers-
132 - 2019-02-10940Marlies-Stars-
135 - 2019-02-13965Falcons-Stars-
137 - 2019-02-15982Stars-Condors-
139 - 2019-02-17995Devils-Stars-
140 - 2019-02-181001Stars-Barracuda-
143 - 2019-02-211023Stars-Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231033Senators-Stars-
147 - 2019-02-251052Stars-Wolves-
148 - 2019-02-261061Wolves-Stars-
150 - 2019-02-281070Stars-Penguins-
153 - 2019-03-031090Checkers-Stars-
157 - 2019-03-071116Stars-Heat-
158 - 2019-03-081121Comets-Stars-
159 - 2019-03-091129Stars-Reign-
162 - 2019-03-121150Rampage-Stars-
163 - 2019-03-131157Stars-Reign-
165 - 2019-03-151165Stars-Heat-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,458,803$ 2,462,400$ 2,338,350$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,455,963$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 14,657$ 1,011,333$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201846122502124130165-3523713011106075-1523512010147090-20371302313610122554910130236449143134124038410065571282620.31%1535067.32%537081845.23%33773745.73%32076042.11%11468111015341635309
Total Regular Season46122502124130165-3523713011106075-1523512010147090-20371302313610122554910130236449143134124038410065571282620.31%1535067.32%537081845.23%33773745.73%32076042.11%11468111015341635309