Stars

GP: 20 | W: 9 | L: 11 | OTL: 0 | P: 18
GF: 25 | GA: 34 | PP%: 12.07% | PK%: 64.71%
GM : Hans Pettersson | Morale : 50 | Team Overall : 58
Next Games vs Falcons
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jacob de La RoseXX100.008857847778627959746258702558596550630
2Andreas MartinsenXXX100.008685876885788458505158725559596450620
3Mario KempeXXX100.007643927768587756526060702547476650610
4Connor BrickleyXX100.008458877070627258316459712552526650610
5Andrew AgozzinoXX100.006966776766808660755660615744446350600
6Peter CehlarikX100.007775816775666762505862655945456450600
7Stefan MatteauX100.008381876481778357504762695951516450600
8Anton BlidhXX100.007773856973808755504956645345456150590
9Lucas WallmarkX100.007743937665558257805059562545456250580
10Erik GustafssonX100.007343947174768072256556632554556650640
11Taylor ChorneyX100.007143897771614753255148752561626050620
12Andy WelinskiX100.007572817372737760255253645044446250610
13Julian MelchioriX100.008481906881667148253941663946465550600
14Jarred TinordiX100.007986636586656949254241633944445350580
15Kyle BurroughsX100.007071676271798750254341593944445350580
16Alex LintuniemiX100.008585856485535451254741663944445550580
Scratches
1Frank VatranoXXX85.787744778275576265505770552558586650610
2Michael LattaX100.007374706574656856705651624844445850570
3Calvin Thurkauf (R)X100.007875856575768351644751634844445850570
4Mitch CallahanX100.007570856970687349504745614344445450550
5Manuel Wiederer (R)XX100.006964826564687254684756595344445850550
6Rich CluneX100.006472456272636751504747604559595350540
7Adam Gilmour (R)XX100.007974926174616549614646634444445550540
8Joseph LaBateX100.006474416574596152654654565144445450530
9Luke WitkowskiX100.008399427178456152445048602555565650580
10Dylan McIlrathX100.007684576584697646253541613944445150570
11Clayton StonerX100.009046476868323050254845753744445350560
12Daniel Walcott (R)X100.006563696263687448253941563944445150540
TEAM AVERAGE99.49776876687465715546505264414848595058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Sean Maguire (R)100.00645265786763687267673044446550630
2Pheonix Copley100.00547088824956515852523044445550570
Scratches
1Matt Hackett100.00494860664955505455543046465250520
2Mason McDonald (R)100.00454759834344505246473044444750500
TEAM AVERAGE100.0053546877525555595555304545555056
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Mario KempeStars (DAL)C/LW/RW2095146008953184116.98%322811.4200023000002065.22%23104001.2300000313
2Frank VatranoStars (DAL)C/LW/RW19410146601686930375.80%321311.2600003000000156.00%25262001.3100000330
3Andreas MartinsenStars (DAL)C/LW/RW2001111646301716326200.00%622511.2500003000010041.03%36876000.9800114111
4Connor BrickleyStars (DAL)LW/RW202792951410279317.41%21628.1300000000000031.71%16463001.1100100032
5Anton BlidhStars (DAL)LW/RW203250141078183816.67%31527.6200000000000042.86%742000.6600101010
6Stefan MatteauStars (DAL)LW202352462051523788.70%41487.4000000000000028.57%734000.6822112001
7Andrew AgozzinoStars (DAL)C/LW20123-129571228154.55%21366.8300000000000070.97%3140000.4400010100
8Peter CehlarikStars (DAL)LW20022-1275112921260.00%11105.5300000000000050.00%240000.3601010000
9Jarred TinordiStars (DAL)D20011-585351748180.00%1127013.520000400000000.00%0016000.0700133000
10Alex LintuniemiStars (DAL)D2001152420454230.00%81929.610000000000000.00%001000.1000013000
Team Total or Average1992144652028613096772851051977.37%4318409.25000213000012141.47%6276438000.71235813897
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Pheonix CopleyStars (DAL)2081000.8723.2211000159460285100.66732020203
Team Total or Average2081000.8723.2211000159460285100.66732020203


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam GilmourStars (DAL)C/RW241994-01-28Yes192 Lbs6 ft4NoNoNo2RFAPro & Farm650,000$650,000$Link
Alex LintuniemiStars (DAL)D231995-09-22No231 Lbs6 ft4NoNoNo2RFAPro & Farm800,000$800,000$Link
Andreas MartinsenStars (DAL)C/LW/RW281990-06-12No220 Lbs6 ft3NoNoNo4RFAPro & Farm675,000$675,000$675,000$675,000$Link
Andrew AgozzinoStars (DAL)C/LW271991-01-02No187 Lbs5 ft10NoNoNo2RFAPro & Farm600,000$600,000$Link
Andy WelinskiStars (DAL)D251993-04-27No205 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$600,000$Link
Anton BlidhStars (DAL)LW/RW231995-03-14No201 Lbs6 ft0NoNoNo1RFAPro & Farm925,000$Link
Calvin ThurkaufStars (DAL)C211997-06-27Yes204 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Clayton StonerStars (DAL)D321986-07-15 7:46:14 AMNo216 Lbs6 ft4NoNoNo1UFAPro & Farm3,250,000$Link
Connor BrickleyStars (DAL)LW/RW261992-02-25No203 Lbs6 ft0NoNoNo4RFAPro & Farm750,000$750,000$750,000$750,000$Link
Daniel WalcottStars (DAL)D241994-02-19Yes174 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Dylan McIlrathStars (DAL)D261992-04-20No236 Lbs6 ft5NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Erik GustafssonStars (DAL)D261992-03-13No176 Lbs6 ft0NoNoNo1RFAPro & Farm667,500$Link
Frank Vatrano (Out of Payroll)Stars (DAL)C/LW/RW241994-03-14No201 Lbs5 ft9NoNoNo4RFAPro & Farm792,500$792,500$792,500$792,500$Link
Jacob de La RoseStars (DAL)C/LW231995-05-20No214 Lbs6 ft3NoNoNo4RFAPro & Farm950,000$950,000$950,000$950,000$Link
Jarred TinordiStars (DAL)D251993-02-20No230 Lbs6 ft6NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Joseph LaBateStars (DAL)C251993-04-16No210 Lbs6 ft5NoNoNo1RFAPro & Farm650,000$Link
Julian MelchioriStars (DAL)D261991-12-06No214 Lbs6 ft5NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Kyle BurroughsStars (DAL)D231995-07-12No203 Lbs6 ft0NoNoNo2RFAPro & Farm630,000$630,000$Link
Lucas WallmarkStars (DAL)C231995-09-05No176 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$650,000$Link
Luke WitkowskiStars (DAL)D281990-04-14No217 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$750,000$Link
Manuel WiedererStars (DAL)C/RW211996-11-21Yes170 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Mario KempeStars (DAL)C/LW/RW301988-09-19No185 Lbs6 ft0NoNoNo4UFAPro & Farm850,000$850,000$850,000$850,000$Link
Mason McDonaldStars (DAL)LW/RW221996-04-23Yes200 Lbs6 ft4NoNoNo3RFAPro & Farm850,000$850,000$850,000$Link
Matt HackettStars (DAL)D271991-03-07No171 Lbs6 ft2NoNoNo1RFAPro & Farm600,000$Link
Michael LattaStars (DAL)C271991-05-25No207 Lbs6 ft0NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Mitch CallahanStars (DAL)RW271991-08-17No190 Lbs6 ft0NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Peter CehlarikStars (DAL)LW231995-05-12No202 Lbs6 ft2NoNoNo2RFAPro & Farm700,000$700,000$Link
Pheonix CopleyStars (DAL)D261992-01-17No196 Lbs6 ft4NoNoNo3RFAPro & Farm709,000$709,000$709,000$Link
Rich CluneStars (DAL)LW301988-07-15 7:46:14 PMNo207 Lbs5 ft10NoNoNo2UFAPro & Farm575,000$575,000$Link
Sean MaguireStars (DAL)G251993-02-02Yes202 Lbs6 ft2NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Stefan MatteauStars (DAL)LW231995-02-23No220 Lbs6 ft2NoNoNo2RFAPro & Farm750,000$750,000$Link
Taylor ChorneyStars (DAL)D301988-07-15 7:46:14 PMNo191 Lbs6 ft0NoNoNo1UFAPro & Farm800,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3225.41202 Lbs6 ft22.41769,500$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Andreas MartinsenMario Kempe30122
3Stefan MatteauConnor BrickleyAnton Blidh20122
4Peter CehlarikAndrew Agozzino10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Jarred Tinordi30122
3Alex Lintuniemi20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Andreas MartinsenMario Kempe40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Jarred Tinordi40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Andreas Martinsen40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Jarred Tinordi40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Jarred Tinordi40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Andreas Martinsen40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Jarred Tinordi40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Connor Brickley, Stefan Matteau, Andrew AgozzinoConnor Brickley, Stefan MatteauAndrew Agozzino
Extra Defensemen
Normal PowerPlayPenalty Kill
, Alex Lintuniemi, Alex Lintuniemi,
Penalty Shots
, , , Andreas Martinsen,
Goalie
#1 : , #2 : Pheonix Copley


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals1010000024-21010000024-20000000000000.000246008232333413219618810167812400.00%4250.00%014333342.94%12528643.71%11830039.33%525382410147273131
2Barracuda20200000313-101010000007-71010000036-300.0003690082323356132196188106117962410110.00%8537.50%014333342.94%12528643.71%11830039.33%525382410147273131
3Condors1010000025-3000000000001010000025-300.0002460082323316132196188103012534000.00%4250.00%014333342.94%12528643.71%11830039.33%525382410147273131
4Crunch10000010541000000000001000001054121.00058130082323330132196188101632318200.00%4250.00%014333342.94%12528643.71%11830039.33%525382410147273131
5Falcons5310001016106210000107343210000097280.80016244000823233141132196188101303695631317.69%15286.67%014333342.94%12528643.71%11830039.33%525382410147273131
6Griffins11000000532110000005320000000000021.00059140082323332132196188103610411200.00%2150.00%014333342.94%12528643.71%11830039.33%525382410147273131
7Gulls2110000010640000000000021100000106420.500101727008232336213219618810531937256116.67%6350.00%014333342.94%12528643.71%11830039.33%525382410147273131
8Moose11000000321110000003210000000000021.0003690082323325132196188103613873133.33%40100.00%014333342.94%12528643.71%11830039.33%525382410147273131
9Pirates1010000024-21010000024-20000000000000.00024600823233251321961881029102417300.00%2150.00%114333342.94%12528643.71%11830039.33%525382410147273131
10Reign3120000078-1211000005501010000023-120.33371421018232336013219618810581067239222.22%11281.82%214333342.94%12528643.71%11830039.33%525382410147273131
Since Last GM Reset20711000205665-91146000102534-99350001031310180.4505698154018232335211321961881050216445622358712.07%682464.71%314333342.94%12528643.71%11830039.33%525382410147273131
Total20711000205665-91146000102534-99350001031310180.4505698154018232335211321961881050216445622358712.07%682464.71%314333342.94%12528643.71%11830039.33%525382410147273131
Vs Conference17610000104655-9935000102028-8835000002627-1140.4124680126018232334411321961881042113840118150612.00%582163.79%214333342.94%12528643.71%11830039.33%525382410147273131
Vs Division1356000103842-4522000101215-3834000002627-1120.462386510301823233335132196188103329434813938513.16%441468.18%214333342.94%12528643.71%11830039.33%525382410147273131
15Wild1010000003-31010000003-30000000000000.00000000823233131321961881016143410200.00%7357.14%014333342.94%12528643.71%11830039.33%525382410147273131
16Wolves1010000013-21010000013-20000000000000.0001230082323327132196188102113794125.00%110.00%014333342.94%12528643.71%11830039.33%525382410147273131

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2018W2569815452150216445622301
All Games
GPWLOTWOTL SOWSOLGFGA
2071100205665
Home Games
GPWLOTWOTL SOWSOLGFGA
114600102534
Visitor Games
GPWLOTWOTL SOWSOLGFGA
93500103131
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
58712.07%682464.71%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
13219618810823233
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
14333342.94%12528643.71%11830039.33%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
525382410147273131


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0310Falcons1Stars4WBoxScore
4 - 2018-10-0526Stars4Falcons3WBoxScore
6 - 2018-10-0742Pirates4Stars2LBoxScore
8 - 2018-10-0949Stars2Gulls3LBoxScore
10 - 2018-10-1170Falcons2Stars3WXXBoxScore
14 - 2018-10-1597 Admirals4Stars2LBoxScore
15 - 2018-10-16104Stars2Reign3LBoxScore
18 - 2018-10-19125Stars3Barracuda6LBoxScore
19 - 2018-10-20136Griffins3Stars5WBoxScore
22 - 2018-10-23158Moose2Stars3WBoxScore
26 - 2018-10-27188Reign5Stars4LBoxScore
28 - 2018-10-29196Stars2Condors5LBoxScore
30 - 2018-10-31212Stars1Falcons3LBoxScore
31 - 2018-11-01226Barracuda7Stars0LBoxScore
35 - 2018-11-05249Wild3Stars0LBoxScore
37 - 2018-11-07262Stars8Gulls3WBoxScore
39 - 2018-11-09278Stars4Falcons1WBoxScore
40 - 2018-11-10287Wolves3Stars1LBoxScore
43 - 2018-11-13306Stars5Crunch4WXXBoxScore
44 - 2018-11-14317Reign0Stars1WBoxScore
47 - 2018-11-17342Condors-Stars-
49 - 2018-11-19355Stars-Checkers-
51 - 2018-11-21368Stars-Phantoms-
53 - 2018-11-23381Monsters-Stars-
55 - 2018-11-25400Stars-IceCaps-
56 - 2018-11-26409Pirates-Stars-
60 - 2018-11-30435Stars-Griffins-
61 - 2018-12-01443Wolf Pack-Stars-
65 - 2018-12-05468Rampage-Stars-
67 - 2018-12-07481Stars-Rampage-
69 - 2018-12-09491Stars-Wild-
71 - 2018-12-11504 Admirals-Stars-
73 - 2018-12-13520Stars-Wild-
75 - 2018-12-15535Bruins-Stars-
77 - 2018-12-17549Stars-Barracuda-
79 - 2018-12-19562Stars-Comets-
81 - 2018-12-21573Griffins-Stars-
83 - 2018-12-23592Stars-Bears-
85 - 2018-12-25601Barracuda-Stars-
87 - 2018-12-27624Ice Hogs-Stars-
88 - 2018-12-28633Stars-Gulls-
90 - 2018-12-30643Stars-Ice Hogs-
92 - 2019-01-01663Gulls-Stars-
95 - 2019-01-04680Stars-Wolves-
97 - 2019-01-06696Wolves-Stars-
99 - 2019-01-08709Stars- Admirals-
100 - 2019-01-09724Stars-Monsters-
101 - 2019-01-10733Pirates-Stars-
104 - 2019-01-13757Moose-Stars-
107 - 2019-01-16774Stars-Americans-
109 - 2019-01-18787Heat-Stars-
113 - 2019-01-22815Wolves-Stars-
116 - 2019-01-25840Ice Hogs-Stars-
120 - 2019-01-29866Stars-Americans-
121 - 2019-01-30873Gulls-Stars-
124 - 2019-02-02892Stars- Admirals-
126 - 2019-02-04902Comets-Stars-
128 - 2019-02-06915Stars-Monsters-
131 - 2019-02-09933Stars-Sound Tigers-
132 - 2019-02-10940Marlies-Stars-
135 - 2019-02-13965Falcons-Stars-
137 - 2019-02-15982Stars-Condors-
139 - 2019-02-17995Devils-Stars-
140 - 2019-02-181001Stars-Barracuda-
143 - 2019-02-211023Stars-Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231033Senators-Stars-
147 - 2019-02-251052Stars-Wolves-
148 - 2019-02-261061Wolves-Stars-
150 - 2019-02-281070Stars-Penguins-
153 - 2019-03-031090Checkers-Stars-
157 - 2019-03-071116Stars-Heat-
158 - 2019-03-081121Comets-Stars-
159 - 2019-03-091129Stars-Reign-
162 - 2019-03-121150Rampage-Stars-
163 - 2019-03-131157Stars-Reign-
165 - 2019-03-151165Stars-Heat-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,383,150$ 2,256,850$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
678,733$ 0$ 678,733$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 14,185$ 1,744,755$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201820711000205665-91146000102534-99350001031310185698154018232335211321961881050216445622358712.07%682464.71%314333342.94%12528643.71%11830039.33%525382410147273131
Total Regular Season20711000205665-91146000102534-99350001031310185698154018232335211321961881050216445622358712.07%682464.71%314333342.94%12528643.71%11830039.33%525382410147273131