Devils

GP: 44 | W: 21 | L: 18 | OTL: 5 | P: 47
GF: 138 | GA: 141 | PP%: 23.36% | PK%: 72.11%
GM : Gary Brown | Morale : 50 | Team Overall : 58
Next Games #717 vs Gulls
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Curtis McKenzieX100.007475737075717269506270686756576950640
2Joakim NordstromXX100.007944977469579658435756742566676450630
3Greg CareyXX100.007671867071838863795667656444446850630
4Oskar Lindblom (R)X100.007744897871687972256359592546466550620
5Dale WeiseX100.008257867377577259445959592570726250600
6Laurent DauphinX100.007267837267717461766057635447476250600
7Michael BuntingX100.007167806367778162505664626144446450600
8Nicolas Aube-Kubel (R)X100.006867696767818662505962615944446450600
9Samuel Laberge (R)X100.007776806676666957504762645944446250580
10Michael Spacek (R)X100.007367886767666860755659635644446250580
11Julien Gauthier (R)X100.008684896584677055504560685744446250580
12Mike ReillyX100.006941867758668270256348612556566150620
13Brad HuntX100.006341957465706077256649582554546250610
14Madison BoweyX100.007343867271646457255947632549496050600
15Ben Thomas (R)X100.007371786271778550254341603944445350580
16Jonas Siegenthaler (R)X100.007979786879657145253441623944445250570
17Philippe Myers (R)X100.007679706779606252254742624044445450570
Scratches
1Sheldon DriesX100.007565986565565657715951634844445950560
2Justin Kirkland (R)XX100.007568906468697550634747614544445550550
3Austin Wagner (R)X100.007071666271504955694758605544445750540
4Gavin Bayreuther (R)X100.007671876671586052254742624044445550570
5Ludwig BystromX100.007064836564656853255041593944445450560
6Jeremy Lauzon (R)X100.007675786575586245253639603744445150550
7Louie Belpedio (R)X100.007869996569505147253939623744445150550
TEAM AVERAGE100.00756584687166715844525362444848605059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Filip Gustavsson (R)100.00644759737064636967663044446350610
2Chad Johnson100.00596665786156466160588761615950590
Scratches
1Landon Bow100.00556075865457525954543044445650570
2Jean-Francois Berube100.00575352666549435861577847485650540
3Philippe Desrosiers100.00484455744847505349493044444950500
TEAM AVERAGE100.0057546175605551605857514848575056
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Oskar LindblomDevils (NJ )LW4491726-9553613215711324.19%859013.4310115101371031.25%485117000.8804001336
2Laurent DauphinDevils (NJ )C4461218-119565283513050794.62%1056012.7500005000102052.94%5273014000.6400238232
3Nicolas Aube-KubelDevils (NJ )RW445914-1633519198926685.62%123888.8200001000001136.84%381914000.7212214015
4Michael BuntingDevils (NJ )LW441031308050162176144313.16%133718.4410110000002040.68%59158000.7012415311
5Samuel LabergeDevils (NJ )LW443912222201035420385.56%42285.1900000000000050.00%6112001.0500022110
6Michael SpacekDevils (NJ )C443912-3884015376325324.76%123598.1700000000001054.85%68086000.6700215101
7Julien GauthierDevils (NJ )RW44369649351063323249.09%92796.3400000000000030.95%42911000.6401205221
8Madison BoweyDevils (NJ )D44156-312018213122123.23%3365214.830000400007000.00%0122000.1800000122
9Julius HonkaDevilsD17044-64016102314100.00%1525615.090000200003000.00%0212000.3100000010
10Miikka SalomakiDevilsLW/RW8224-2209417101411.76%48911.1500002000001025.00%813000.9000000201
11Gavin BayreutherDevils (NJ )D30123021158664716.67%142909.670000000000000.00%0011000.2100120004
12Ben ThomasDevils (NJ )D30022-24020966520.00%162979.920000000000000.00%0213000.1300022031
Team Total or Average4374380123-294812851941817432844615.79%15043649.992022221014208151.35%1408149133000.5629131232151724
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Austin WagnerDevils (NJ )LW211997-06-23Yes178 Lbs6 ft1NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Ben ThomasDevils (NJ )D221996-05-27Yes187 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Brad HuntDevils (NJ )D301988-08-24No187 Lbs5 ft9NoNoNo2UFAPro & Farm700,000$0$0$NoLink
Chad JohnsonDevils (NJ )G321986-07-15 7:46:14 AMNo196 Lbs6 ft3NoNoNo3UFAPro & Farm2,000,000$0$0$NoLink
Curtis McKenzieDevils (NJ )LW271991-02-22No205 Lbs6 ft2NoNoNo4RFAPro & Farm700,000$0$0$NoLink
Dale WeiseDevils (NJ )RW291989-08-05No206 Lbs6 ft2NoNoNo2UFAPro & Farm1,800,000$0$0$NoLink
Filip GustavssonDevils (NJ )G201998-06-07Yes183 Lbs6 ft2NoNoNo3ELCPro & Farm800,000$0$0$NoLink
Gavin BayreutherDevils (NJ )D241994-05-12Yes194 Lbs6 ft1NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Greg CareyDevils (NJ )C/LW281990-05-09No195 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Jean-Francois BerubeDevils (NJ )G271991-07-13No177 Lbs6 ft1NoNoNo4RFAPro & Farm700,000$0$0$NoLink
Jeremy LauzonDevils (NJ )D211997-04-28Yes204 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Joakim NordstromDevils (NJ )C/RW261992-02-25No189 Lbs6 ft1NoNoNo1RFAPro & Farm1,125,000$0$0$NoLink
Jonas SiegenthalerDevils (NJ )D211997-05-06Yes220 Lbs6 ft3NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Julien GauthierDevils (NJ )RW211997-10-15Yes225 Lbs6 ft4NoNoNo3RFAPro & Farm900,000$0$0$NoLink
Justin KirklandDevils (NJ )C/LW221996-08-01Yes183 Lbs6 ft1NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Landon BowDevils (NJ )G231995-08-23No214 Lbs6 ft4NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Laurent DauphinDevils (NJ )C231995-03-27No180 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Louie BelpedioDevils (NJ )D221996-05-14Yes193 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Ludwig BystromDevils (NJ )D241994-07-20No175 Lbs6 ft1NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Madison BoweyDevils (NJ )D231995-04-22No195 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Michael BuntingDevils (NJ )LW231995-09-17No197 Lbs5 ft11NoNoNo1RFAPro & Farm600,000$0$0$NoLink
Michael SpacekDevils (NJ )C211997-04-09Yes187 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Mike ReillyDevils (NJ )D251993-07-12No193 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Nicolas Aube-KubelDevils (NJ )RW221996-05-09Yes187 Lbs5 ft11NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Oskar LindblomDevils (NJ )LW221996-08-15Yes191 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Philippe DesrosiersDevils (NJ )G231995-08-15No195 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Philippe MyersDevils (NJ )D211997-01-25Yes196 Lbs6 ft5NoNoNo4RFAPro & Farm725,000$0$0$NoLink
Samuel LabergeDevils (NJ )LW211997-04-10Yes205 Lbs6 ft2NoNoNo4RFAPro & Farm785,000$0$0$NoLink
Sheldon DriesDevils (NJ )C241994-04-23No185 Lbs5 ft9NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2923.72194 Lbs6 ft12.45825,345$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Oskar LindblomLaurent Dauphin30122
3Michael BuntingMichael SpacekNicolas Aube-Kubel20122
4Samuel LabergeJulien Gauthier10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Madison Bowey30122
320122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Oskar LindblomLaurent Dauphin40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Madison Bowey40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Oskar Lindblom40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Madison Bowey40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Madison Bowey40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Oskar Lindblom40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Madison Bowey40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Michael Bunting, Nicolas Aube-Kubel, Julien GauthierMichael Bunting, Nicolas Aube-KubelJulien Gauthier
Extra Defensemen
Normal PowerPlayPenalty Kill
, , ,
Penalty Shots
, , Oskar Lindblom, ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans3110100078-11010000025-32100100053240.667714210027485867936343642923893126306466.67%80100.00%041178852.16%37475549.54%35273547.89%10707601035305566284
2Barracuda11000000532110000005320000000000021.00059140027485862836343642923311322116233.33%110.00%041178852.16%37475549.54%35273547.89%10707601035305566284
3Bears20100001912-31010000046-21000000156-110.250917260027485866836343642923722423328225.00%9722.22%141178852.16%37475549.54%35273547.89%10707601035305566284
4Bruins11000000431110000004310000000000021.0004812002748586233634364292335310134250.00%5180.00%041178852.16%37475549.54%35273547.89%10707601035305566284
5Checkers3020010048-42010010036-31010000012-110.16747110027485869236343642923831959391300.00%70100.00%041178852.16%37475549.54%35273547.89%10707601035305566284
6Comets11000000752110000007520000000000021.00071421002748586463634364292325719204125.00%20100.00%041178852.16%37475549.54%35273547.89%10707601035305566284
7Condors1010000023-1000000000001010000023-100.00023500274858626363436429232372811200.00%4175.00%041178852.16%37475549.54%35273547.89%10707601035305566284
8Crunch1000010012-11000010012-10000000000010.50012300274858613363436429232941314400.00%4250.00%041178852.16%37475549.54%35273547.89%10707601035305566284
9Griffins21100000550000000000002110000055020.50058130027485865336343642923461335218112.50%50100.00%041178852.16%37475549.54%35273547.89%10707601035305566284
10Gulls1000010034-1000000000001000010034-110.50036900274858640363436429232461110500.00%3166.67%041178852.16%37475549.54%35273547.89%10707601035305566284
11IceCaps11000000211110000002110000000000021.000246002748586363634364292320930143133.33%50100.00%041178852.16%37475549.54%35273547.89%10707601035305566284
12Marlies211000006601010000014-31100000052320.500611170027485864836343642923472120234250.00%5260.00%041178852.16%37475549.54%35273547.89%10707601035305566284
13Monsters1010000001-1000000000001010000001-100.000000002748586173634364292329103311000.00%4175.00%041178852.16%37475549.54%35273547.89%10707601035305566284
14Moose10000010431100000104310000000000021.00045900274858628363436429233162395120.00%40100.00%041178852.16%37475549.54%35273547.89%10707601035305566284
15Penguins541000002010103300000013582110000075280.8002038580027485861313634364292313855614016850.00%13469.23%241178852.16%37475549.54%35273547.89%10707601035305566284
16Phantoms521010102018221001000116531100010912-380.80020365600274858612736343642923159361148313538.46%22768.18%041178852.16%37475549.54%35273547.89%10707601035305566284
17Pirates21100000770000000000002110000077020.50071320002748586573634364292352234328600.00%40100.00%141178852.16%37475549.54%35273547.89%10707601035305566284
18Rampage11000000972000000000001100000097221.00091524002748586443634364292333121059200.00%550.00%041178852.16%37475549.54%35273547.89%10707601035305566284
19Reign1010000024-2000000000001010000024-200.000235102748586223634364292323657104125.00%6183.33%041178852.16%37475549.54%35273547.89%10707601035305566284
20Senators2010000158-32010000158-30000000000010.25059140027485866336343642923712542175120.00%11463.64%141178852.16%37475549.54%35273547.89%10707601035305566284
21Sound Tigers30201000610-42010100045-11010000025-320.333610160027485867636343642923672250379111.11%50100.00%041178852.16%37475549.54%35273547.89%10707601035305566284
Total44161803322138141-32389022117172-12189011116769-2470.53413825138910274858612353634364292312574028895351373223.36%1474172.11%541178852.16%37475549.54%35273547.89%10707601035305566284
23Wolf Pack2020000047-32020000047-30000000000000.0004711002748586673634364292362221933700.00%7357.14%041178852.16%37475549.54%35273547.89%10707601035305566284
24Wolves1010000013-21010000013-20000000000000.00012300274858622363436429234621810000.00%4175.00%041178852.16%37475549.54%35273547.89%10707601035305566284
25Wolves11000000532000000000001100000053221.0005101500274858629363436429232273810300.00%40100.00%041178852.16%37475549.54%35273547.89%10707601035305566284
_Since Last GM Reset44161803322138141-32389022117172-12189011116769-2470.53413825138910274858612353634364292312574028895351373223.36%1474172.11%541178852.16%37475549.54%35273547.89%10707601035305566284
_Vs Conference3311130322299103-42068022115861-31355010114142-1360.54599181280002748586908363436429239553005334121032726.21%1093072.48%541178852.16%37475549.54%35273547.89%10707601035305566284
_Vs Division2166020106366-312430200039354923000102431-7180.4296311517800274858657836343642923610188359275661624.24%672267.16%341178852.16%37475549.54%35273547.89%10707601035305566284

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4447L11382513891235125740288953510
All Games
GPWLOTWOTL SOWSOLGFGA
4416183322138141
Home Games
GPWLOTWOTL SOWSOLGFGA
238922117172
Visitor Games
GPWLOTWOTL SOWSOLGFGA
218911116769
Last 10 Games
WLOTWOTL SOWSOL
730000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1373223.36%1474172.11%5
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
363436429232748586
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
41178852.16%37475549.54%35273547.89%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10707601035305566284


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2018-10-0418Wolf Pack3Devils2LBoxScore
5 - 2018-10-0634Devils1Checkers2LBoxScore
7 - 2018-10-0844Bears6Devils4LBoxScore
9 - 2018-10-1054Devils2Sound Tigers5LBoxScore
12 - 2018-10-1377Penguins1Devils6WBoxScore
13 - 2018-10-1490Devils4Phantoms3WBoxScore
15 - 2018-10-16108Crunch2Devils1LXBoxScore
18 - 2018-10-19130Checkers2Devils1LXBoxScore
20 - 2018-10-21143Devils5Penguins1WBoxScore
21 - 2018-10-22152Devils1Phantoms6LBoxScore
24 - 2018-10-25169Penguins1Devils2WBoxScore
26 - 2018-10-27189Senators5Devils3LBoxScore
28 - 2018-10-29197Devils1Griffins2LBoxScore
31 - 2018-11-01223Sound Tigers3Devils1LBoxScore
35 - 2018-11-05248Devils5Marlies2WBoxScore
37 - 2018-11-07258Comets5Devils7WBoxScore
40 - 2018-11-10281Checkers4Devils2LBoxScore
42 - 2018-11-12302Devils2Americans1WBoxScore
44 - 2018-11-14312Senators3Devils2LXXBoxScore
46 - 2018-11-16329Devils2Condors3LBoxScore
48 - 2018-11-18343Phantoms3Devils4WXBoxScore
50 - 2018-11-20361Devils5Bears6LXXBoxScore
52 - 2018-11-22374Sound Tigers2Devils3WXBoxScore
54 - 2018-11-24393Devils2Pirates3LBoxScore
55 - 2018-11-25403Americans5Devils2LBoxScore
58 - 2018-11-28418Devils9Rampage7WBoxScore
60 - 2018-11-30436Marlies4Devils1LBoxScore
62 - 2018-12-02446Devils5Pirates4WBoxScore
64 - 2018-12-04464Phantoms3Devils7WBoxScore
66 - 2018-12-06477Devils2Reign4LBoxScore
70 - 2018-12-10500Barracuda3Devils5WBoxScore
72 - 2018-12-12511Devils2Penguins4LBoxScore
74 - 2018-12-14527Moose3Devils4WXXBoxScore
76 - 2018-12-16542Devils3Gulls4LXBoxScore
79 - 2018-12-19560Devils5Wolves3WBoxScore
80 - 2018-12-20567Penguins3Devils5WBoxScore
83 - 2018-12-23591Devils4Griffins3WBoxScore
84 - 2018-12-24598IceCaps1Devils2WBoxScore
87 - 2018-12-27623Wolves3Devils1LBoxScore
89 - 2018-12-29637Devils4Phantoms3WXXBoxScore
91 - 2018-12-31650Devils3Americans2WXBoxScore
92 - 2019-01-01660Wolf Pack4Devils2LBoxScore
96 - 2019-01-05687Bruins3Devils4WBoxScore
98 - 2019-01-07702Devils0Monsters1LBoxScore
100 - 2019-01-09717Gulls-Devils-
102 - 2019-01-11738Devils-IceCaps-
104 - 2019-01-13749Falcons-Devils-
106 - 2019-01-15766Devils-Crunch-
107 - 2019-01-16778Ice Hogs-Devils-
110 - 2019-01-19796Devils-Wild-
111 - 2019-01-20806Devils-Moose-
113 - 2019-01-22816 Admirals-Devils-
117 - 2019-01-26842Devils-Senators-
118 - 2019-01-27848Moose-Devils-
120 - 2019-01-29864Devils-Wolf Pack-
122 - 2019-01-31878Crunch-Devils-
125 - 2019-02-03900Devils-Checkers-
127 - 2019-02-05910Crunch-Devils-
129 - 2019-02-07924Devils-Wolf Pack-
131 - 2019-02-09934Devils-Moose-
132 - 2019-02-10944 Admirals-Devils-
135 - 2019-02-13962Devils-Sound Tigers-
136 - 2019-02-14976Marlies-Devils-
139 - 2019-02-17995Devils-Stars-
141 - 2019-02-191007Devils-Heat-
142 - 2019-02-201016Wolf Pack-Devils-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231035Devils-IceCaps-
146 - 2019-02-241046Bears-Devils-
148 - 2019-02-261058Devils-Bruins-
151 - 2019-03-011075Pirates-Devils-
152 - 2019-03-021088Devils-Bruins-
155 - 2019-03-051104Americans-Devils-
158 - 2019-03-081124Devils-Sound Tigers-
160 - 2019-03-101136Pirates-Devils-
163 - 2019-03-131155Bears-Devils-
164 - 2019-03-141160Devils-Checkers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,399,973$ 2,393,500$ 1,673,250$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,399,973$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 14,247$ 983,043$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201844161803322138141-32389022117172-12189011116769-24713825138910274858612353634364292312574028895351373223.36%1474172.11%541178852.16%37475549.54%35273547.89%10707601035305566284
Total Regular Season44161803322138141-32389022117172-12189011116769-24713825138910274858612353634364292312574028895351373223.36%1474172.11%541178852.16%37475549.54%35273547.89%10707601035305566284