Devils

GP: 20 | W: 7 | L: 10 | OTL: 3 | P: 17
GF: 31 | GA: 35 | PP%: 19.05% | PK%: 72.22%
GM : Gary Brown | Morale : 50 | Team Overall : 58
Next Games vs Wolf Pack
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Curtis McKenzieX100.007475737075717269506270686756576950640
2Oskar Lindblom (R)X100.007744897871687972256359592546466550620
3Laurent DauphinX100.007267837267717461766057635447476250600
4Michael BuntingX100.007167806367778162505664626144446450600
5Nicolas Aube-Kubel (R)X100.006867696767818662505962615944446450600
6Samuel Laberge (R)X100.007776806676666957504762645944446250580
7Michael Spacek (R)X100.007367886767666860755659635644446250580
8Julien Gauthier (R)X100.008684896584677055504560685744446250580
9Madison BoweyX100.007343867271646457255947632549496050600
10Ben Thomas (R)X100.007371786271778550254341603944445350580
11Gavin Bayreuther (R)X100.007671876671586052254742624044445550570
Scratches
1Joakim NordstromXX100.007944977469579658435756742566676450630
2Greg CareyXX100.007671867071838863795667656444446850630
3Dale WeiseX100.008257867377577259445959592570726250600
4Sheldon DriesX100.007565986565565657715951634844445950560
5Justin Kirkland (R)XX100.007568906468697550634747614544445550550
6Austin Wagner (R)X100.007071666271504955694758605544445750540
7Mike ReillyX100.006941867758668270256348612556566150620
8Brad HuntX100.006341957465706077256649582554546250610
9Jonas Siegenthaler (R)X100.007979786879657145253441623944445250570
10Philippe Myers (R)X100.007679706779606252254742624044445450570
11Ludwig BystromX100.007064836564656853255041593944445450560
12Jeremy Lauzon (R)X100.007675786575586245253639603744445150550
13Louie Belpedio (R)X100.007869996569505147253939623744445150550
TEAM AVERAGE100.00756584687166715844525362444848605059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Filip Gustavsson (R)100.00644759737064636967663044446350610
2Landon Bow100.00556075865457525954543044445650570
3Jean-Francois Berube100.00575352666549435861577847485650540
4Philippe Desrosiers100.00484455744847505349493044444950500
TEAM AVERAGE100.0056516075595452605857424545565056
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Oskar LindblomDevils (NJ )LW2051015-7001859330495.38%326513.2700003101331034.78%23258001.1301000202
2Laurent DauphinDevils (NJ )C204711-9343012164524278.89%325312.6800003000002052.11%284129000.8700204022
3Samuel LabergeDevils (NJ )LW20145220412910223.45%31145.7100000000000075.00%460000.8800000010
4Julius HonkaDevilsD17044-64016102314100.00%1525615.090000200003000.00%0212000.3100000010
5Miikka SalomakiDevilsLW/RW8224-2209417101411.76%48911.1500002000001025.00%813000.9000000201
6Nicolas Aube-KubelDevils (NJ )RW20134-4201012124411372.27%71859.2800001000000027.78%1888000.4301002011
7Madison BoweyDevils (NJ )D20033-7201311181160.00%1729714.870000200004000.00%0017000.2000000110
8Michael SpacekDevils (NJ )C20123-515157163515122.86%71728.6000000000000052.23%31443000.3500111000
9Julien GauthierDevils (NJ )RW20213517155516121512.50%71246.2100000000000018.18%1153000.4800003111
10Michael BuntingDevils (NJ )LW20202-43420811374185.41%51768.8100000000000044.83%2972000.2300211001
11Ben ThomasDevils (NJ )D20011-31610644220.00%81989.930000000000000.00%008000.1000002011
12Gavin BayreutherDevils (NJ )D20101-112103452620.00%91919.600000000000000.00%008000.1000110002
Team Total or Average225193756-41158110113993661452185.19%88232410.330000151013114049.93%6917081000.480263136811
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
Team Total or Average0.0000.0000.000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Austin WagnerDevils (NJ )LW211997-06-23Yes178 Lbs6 ft1NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Ben ThomasDevils (NJ )D221996-05-27Yes187 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$600,000$Link
Brad HuntDevils (NJ )D301988-08-24No187 Lbs5 ft9NoNoNo2UFAPro & Farm700,000$700,000$Link
Curtis McKenzieDevils (NJ )LW271991-02-22No205 Lbs6 ft2NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Dale WeiseDevils (NJ )RW291989-08-05No206 Lbs6 ft2NoNoNo2UFAPro & Farm1,800,000$1,800,000$Link
Filip GustavssonDevils (NJ )D201998-06-07Yes183 Lbs6 ft2NoNoNo3ELCPro & Farm800,000$800,000$800,000$Link
Gavin BayreutherDevils (NJ )D241994-05-12Yes194 Lbs6 ft1NoNoNo2RFAPro & Farm925,000$925,000$Link
Greg CareyDevils (NJ )C/LW281990-05-09No195 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$650,000$Link
Jean-Francois BerubeDevils (NJ )D271991-07-13No177 Lbs6 ft1NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Jeremy LauzonDevils (NJ )D211997-04-28Yes204 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Joakim NordstromDevils (NJ )C/RW261992-02-25No189 Lbs6 ft1NoNoNo1RFAPro & Farm1,125,000$Link
Jonas SiegenthalerDevils (NJ )D211997-05-06Yes220 Lbs6 ft3NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Julien GauthierDevils (NJ )RW211997-10-15Yes225 Lbs6 ft4NoNoNo3RFAPro & Farm900,000$900,000$900,000$Link
Justin KirklandDevils (NJ )C/LW221996-08-01Yes183 Lbs6 ft1NoNoNo2RFAPro & Farm750,000$750,000$Link
Landon BowDevils (NJ )RW231995-08-23No214 Lbs6 ft4NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Laurent DauphinDevils (NJ )C231995-03-27No180 Lbs6 ft1NoNoNo1RFAPro & Farm850,000$Link
Louie BelpedioDevils (NJ )D221996-05-14Yes193 Lbs5 ft11NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Ludwig BystromDevils (NJ )D241994-07-20No175 Lbs6 ft1NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Madison BoweyDevils (NJ )D231995-04-22No195 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$Link
Michael BuntingDevils (NJ )LW231995-09-17No197 Lbs5 ft11NoNoNo1RFAPro & Farm600,000$Link
Michael SpacekDevils (NJ )C211997-04-09Yes187 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Mike ReillyDevils (NJ )D251993-07-12No193 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$Link
Nicolas Aube-KubelDevils (NJ )RW221996-05-09Yes187 Lbs5 ft11NoNoNo2RFAPro & Farm800,000$800,000$Link
Oskar LindblomDevils (NJ )LW221996-08-15Yes191 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Philippe DesrosiersDevils (NJ )D231995-08-15No195 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$Link
Philippe MyersDevils (NJ )D211997-01-25Yes196 Lbs6 ft5NoNoNo4RFAPro & Farm725,000$725,000$725,000$725,000$Link
Samuel LabergeDevils (NJ )LW211997-04-10Yes205 Lbs6 ft2NoNoNo4RFAPro & Farm785,000$785,000$785,000$785,000$Link
Sheldon DriesDevils (NJ )C241994-04-23No185 Lbs5 ft9NoNoNo2RFAPro & Farm925,000$925,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2823.43194 Lbs6 ft12.43783,393$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Oskar LindblomLaurent Dauphin30122
3Michael BuntingMichael SpacekNicolas Aube-Kubel20122
4Samuel LabergeJulien Gauthier10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Madison Bowey30122
3Ben ThomasGavin Bayreuther20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Oskar LindblomLaurent Dauphin40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Madison Bowey40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Oskar Lindblom40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Madison Bowey40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Madison Bowey40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Oskar Lindblom40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Madison Bowey40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Michael Bunting, Nicolas Aube-Kubel, Julien GauthierMichael Bunting, Nicolas Aube-KubelJulien Gauthier
Extra Defensemen
Normal PowerPlayPenalty Kill
Ben Thomas, Gavin Bayreuther, Ben ThomasGavin Bayreuther,
Penalty Shots
, , Oskar Lindblom, ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans11000000211000000000001100000021121.000246007182902816519221743112161022100.00%30100.00%018036149.86%18036149.86%15131547.94%476334470139261131
2Bears1010000046-21010000046-20000000000000.000471100718290401651922174328924300.00%220.00%018036149.86%18036149.86%15131547.94%476334470139261131
3Checkers3020010048-42010010036-31010000012-110.167471100718290921651922174831959391300.00%70100.00%018036149.86%18036149.86%15131547.94%476334470139261131
4Comets11000000752110000007520000000000021.000714210071829046165192217425719204125.00%20100.00%018036149.86%18036149.86%15131547.94%476334470139261131
5Condors1010000023-1000000000001010000023-100.000235007182902616519221742372811200.00%4175.00%018036149.86%18036149.86%15131547.94%476334470139261131
6Crunch1000010012-11000010012-10000000000010.500123007182901316519221742941314400.00%4250.00%018036149.86%18036149.86%15131547.94%476334470139261131
7Griffins1010000012-1000000000001010000012-100.00011200718290261651922174348610100.00%30100.00%018036149.86%18036149.86%15131547.94%476334470139261131
8Marlies11000000523000000000001100000052321.0005914007182902916519221741889133133.33%2150.00%018036149.86%18036149.86%15131547.94%476334470139261131
9Penguins3300000013310220000008261100000051461.00013243700718290771651922174853521287457.14%30100.00%218036149.86%18036149.86%15131547.94%476334470139261131
10Phantoms2110000059-4000000000002110000059-420.5005101500718290571651922174702426366233.33%8362.50%018036149.86%18036149.86%15131547.94%476334470139261131
11Senators2010000158-32010000158-30000000000010.250591400718290631651922174712542175120.00%11463.64%118036149.86%18036149.86%15131547.94%476334470139261131
Since Last GM Reset20710002015460-61135002013135-4945000002325-2170.4255497151007182905751651922174586188303266631219.05%541572.22%318036149.86%18036149.86%15131547.94%476334470139261131
13Sound Tigers2020000038-51010000013-21010000025-300.00034700718290501651922174491446267114.29%30100.00%018036149.86%18036149.86%15131547.94%476334470139261131
Total20710002015460-61135002013135-4945000002325-2170.4255497151007182905751651922174586188303266631219.05%541572.22%318036149.86%18036149.86%15131547.94%476334470139261131
Vs Conference1768002014450-61025002012430-67430000020200150.4414479123007182904771651922174504166250225561119.64%451468.89%318036149.86%18036149.86%15131547.94%476334470139261131
Vs Division1244000003137-6722000001820-2522000001317-480.33331558600718290344165192217435511717017142716.67%25772.00%218036149.86%18036149.86%15131547.94%476334470139261131
17Wolf Pack1010000023-11010000023-10000000000000.000235007182902816519221743617918600.00%220.00%018036149.86%18036149.86%15131547.94%476334470139261131

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2017L1549715157558618830326600
All Games
GPWLOTWOTL SOWSOLGFGA
2071002015460
Home Games
GPWLOTWOTL SOWSOLGFGA
113502013135
Visitor Games
GPWLOTWOTL SOWSOLGFGA
94500002325
Last 10 Games
WLOTWOTL SOWSOL
450001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
631219.05%541572.22%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
1651922174718290
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
18036149.86%18036149.86%15131547.94%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
476334470139261131


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2018-10-0418Wolf Pack3Devils2LBoxScore
5 - 2018-10-0634Devils1Checkers2LBoxScore
7 - 2018-10-0844Bears6Devils4LBoxScore
9 - 2018-10-1054Devils2Sound Tigers5LBoxScore
12 - 2018-10-1377Penguins1Devils6WBoxScore
13 - 2018-10-1490Devils4Phantoms3WBoxScore
15 - 2018-10-16108Crunch2Devils1LXBoxScore
18 - 2018-10-19130Checkers2Devils1LXBoxScore
20 - 2018-10-21143Devils5Penguins1WBoxScore
21 - 2018-10-22152Devils1Phantoms6LBoxScore
24 - 2018-10-25169Penguins1Devils2WBoxScore
26 - 2018-10-27189Senators5Devils3LBoxScore
28 - 2018-10-29197Devils1Griffins2LBoxScore
31 - 2018-11-01223Sound Tigers3Devils1LBoxScore
35 - 2018-11-05248Devils5Marlies2WBoxScore
37 - 2018-11-07258Comets5Devils7WBoxScore
40 - 2018-11-10281Checkers4Devils2LBoxScore
42 - 2018-11-12302Devils2Americans1WBoxScore
44 - 2018-11-14312Senators3Devils2LXXBoxScore
46 - 2018-11-16329Devils2Condors3LBoxScore
48 - 2018-11-18343Phantoms-Devils-
50 - 2018-11-20361Devils-Bears-
52 - 2018-11-22374Sound Tigers-Devils-
54 - 2018-11-24393Devils-Pirates-
55 - 2018-11-25403Americans-Devils-
58 - 2018-11-28418Devils-Rampage-
60 - 2018-11-30436Marlies-Devils-
62 - 2018-12-02446Devils-Pirates-
64 - 2018-12-04464Phantoms-Devils-
66 - 2018-12-06477Devils-Reign-
70 - 2018-12-10500Barracuda-Devils-
72 - 2018-12-12511Devils-Penguins-
74 - 2018-12-14527Moose-Devils-
76 - 2018-12-16542Devils-Gulls-
79 - 2018-12-19560Devils-Wolves-
80 - 2018-12-20567Penguins-Devils-
83 - 2018-12-23591Devils-Griffins-
84 - 2018-12-24598IceCaps-Devils-
87 - 2018-12-27623Wolves-Devils-
89 - 2018-12-29637Devils-Phantoms-
91 - 2018-12-31650Devils-Americans-
92 - 2019-01-01660Wolf Pack-Devils-
96 - 2019-01-05687Bruins-Devils-
98 - 2019-01-07702Devils-Monsters-
100 - 2019-01-09717Gulls-Devils-
102 - 2019-01-11738Devils-IceCaps-
104 - 2019-01-13749Falcons-Devils-
106 - 2019-01-15766Devils-Crunch-
107 - 2019-01-16778Ice Hogs-Devils-
110 - 2019-01-19796Devils-Wild-
111 - 2019-01-20806Devils-Moose-
113 - 2019-01-22816 Admirals-Devils-
117 - 2019-01-26842Devils-Senators-
118 - 2019-01-27848Moose-Devils-
120 - 2019-01-29864Devils-Wolf Pack-
122 - 2019-01-31878Crunch-Devils-
125 - 2019-02-03900Devils-Checkers-
127 - 2019-02-05910Crunch-Devils-
129 - 2019-02-07924Devils-Wolf Pack-
131 - 2019-02-09934Devils-Moose-
132 - 2019-02-10944 Admirals-Devils-
135 - 2019-02-13962Devils-Sound Tigers-
136 - 2019-02-14976Marlies-Devils-
139 - 2019-02-17995Devils-Stars-
141 - 2019-02-191007Devils-Heat-
142 - 2019-02-201016Wolf Pack-Devils-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231035Devils-IceCaps-
146 - 2019-02-241046Bears-Devils-
148 - 2019-02-261058Devils-Bruins-
151 - 2019-03-011075Pirates-Devils-
152 - 2019-03-021088Devils-Bruins-
155 - 2019-03-051104Americans-Devils-
158 - 2019-03-081124Devils-Sound Tigers-
160 - 2019-03-101136Pirates-Devils-
163 - 2019-03-131155Bears-Devils-
164 - 2019-03-141160Devils-Checkers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,193,500$ 1,673,250$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
669,872$ 0$ 669,872$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 122 13,057$ 1,592,954$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201820710002015460-61135002013135-4945000002325-2175497151007182905751651922174586188303266631219.05%541572.22%318036149.86%18036149.86%15131547.94%476334470139261131
Total Regular Season20710002015460-61135002013135-4945000002325-2175497151007182905751651922174586188303266631219.05%541572.22%318036149.86%18036149.86%15131547.94%476334470139261131