Wolves

GP: 4 | W: 1 | L: 2 | OTL: 1 | P: 3
GF: 6 | GA: 7 | PP%: 25.00% | PK%: 36.36%
GM : Jeff McLaren | Morale : 51 | Team Overall : 61
Next Games vs Griffins
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Aleksander BarkovX100.006342939179898792949285839067688550810
2Blake WheelerXX100.007745818685859983599979716579818250790
3Alex TuchX100.007855897485708878467371604555557250680
4Matt PuempelX100.007975897275676768506665706254546851650
5Alex Iafallo (R)X100.006942947968707866406662662558586751640
6Anton SlepyshevXX100.007744947572626861296162602556566551610
7Kyle CriscuoloX100.006660816260798462785960605744446351600
8Brooks OrpikX100.009260767081789757255147917585916550740
9Patrik NemethX100.007555827185797160255448992561626550720
10Cameron SchillingX97.007569896669798653254942624044445651610
11Andreas EnglundX100.007871947471768446253739623744445451600
12Dean KukanX100.005941936876607459256847582545455952600
13Evan McEneny (R)X100.007975886875575759255252654944446051600
Scratches
1Michael ChaputX94.007776787376828765806261705859596751660
2Johan LarssonX94.008054827874677559876357862565656751660
3A.J. GreerX100.008385557278487658346455582546466049590
4Daniel CatenacciXX100.006965796565687253665250594845455749560
5Antoine Waked (R)X100.007470846770748148504348604644445649560
6Clarke MacArthurX100.007242877062323050506046644244445849530
7Mikkel Aagaard (R)XXX100.006864786464484851644156585344445549530
8Radim SimekX100.007670906670667051254642624044445549590
9James de Haas (R)X100.008278906678555750254540653844445449590
10Christian Jaros (R)X100.008076886376575951254741643944445549580
11Ryan StantonX100.007373736673606447253640633858585149580
12Joel HanleyX100.007267825567748052254840613846465449580
13Michael Kapla (R)X100.007873896573657048254041623944445349580
14Jacob Middleton (R)X100.007376666076687352254842614044445449580
15Yaroslav Dyblenko (R)X100.007475736575646946253640603844445149570
16Ahti OksanenXX100.008277956277495049454646644444445449570
17Anton Cederholm (R)X100.008376996476363541252839633744444949530
TEAM AVERAGE99.50756484697465715742545166445152605062
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Kasimir Kaskisuo95.00605164806363626766653044446251620
Scratches
1Matej Machovsky (R)100.00574759746057606460603044445849580
2Stephon Williams (R)100.00484759754848505449493044444949520
TEAM AVERAGE98.3355486176575657625858304444565057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Benoit Groulx40404040646148CAN501250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Anton SlepyshevWolves (STL)LW/RW435860047152820.00%26315.7601124000000042.86%763002.5400000010
2Matt PuempelWolves (STL)LW43473221056163718.75%36215.5301133000020050.00%620002.2500200100
3Kyle CriscuoloWolves (STL)C41566002792511.11%06215.6701114000000051.25%8000001.9100000010
4Johan LarssonWolves (STL)LW4325-3407102151514.29%69624.2100007000170062.96%27102011.0301000010
5Michael ChaputWolves (STL)C4224-4001253410205.88%310726.9600047000061047.56%8242000.7401000002
6Andreas EnglundWolves (STL)D4033000351020.00%27619.150000300004000.00%003000.7800000000
7Alex IafalloWolves (STL)LW4022000528340.00%24511.40000000000300100.00%122000.8800000000
8Cameron SchillingWolves (STL)D4011275474590.00%510526.410112900007000.00%025000.1900100000
9Jason DickinsonBluesC/LW1011100211000.00%01010.4500000000000050.00%600001.9100000000
10Nicolas KerdilesBluesLW1011100123000.00%01212.820000000000000.00%010001.5600000000
11Andreas BorgmanBluesD1000-100230010.00%12626.000000300000000.00%011000.0000000000
12Dean KukanWolves (STL)D4000155111100.00%35313.360000000002000.00%001000.0000001000
13Sami NikuBluesD1000000020000.00%01515.100000000000000.00%000000.0000000000
14Cole BardreauBluesC/RW1000000520010.00%01313.0800000000000025.00%400000.0000000000
15Marcus SorensenBluesLW/RW1000-100003320.00%01616.57000130000000100.00%111000.0000000000
16Evan McEnenyWolves (STL)D4000-155852110.00%37318.270000200004000.00%024000.0000010000
17Michael Dal ColleBluesLW1000000100010.00%077.83000000000000100.00%101000.0000000000
Team Total or Average471226381043256265118357610.17%3084818.0604413510001391051.16%2153125010.9002311132
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Adin HillBlues11000.9501.00600012010000.000010000
2Kasimir KaskisuoWolves (STL)30210.8246.84158001810247000.000234000
Team Total or Average41210.8445.23218001912257000.000244000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
A.J. GreerWolves (STL)LW211996-12-14No204 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$850,000$Link
Ahti OksanenWolves (STL)LW/D251993-03-10No207 Lbs6 ft3NoNoNo2RFAPro & Farm650,000$650,000$Link
Aleksander BarkovWolves (STL)C231995-09-02No213 Lbs6 ft3NoNoNo3RFAPro & Farm5,900,000$5,900,000$5,900,000$Link
Alex IafalloWolves (STL)LW241993-12-21Yes176 Lbs6 ft0NoNoNo3RFAPro & Farm975,000$975,000$975,000$Link
Alex TuchWolves (STL)RW221996-05-10No222 Lbs6 ft4NoNoNo2RFAPro & Farm900,000$900,000$Link
Andreas EnglundWolves (STL)D221996-01-21No189 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$850,000$Link
Antoine WakedWolves (STL)RW221996-05-17Yes194 Lbs6 ft0NoNoNo2RFAPro & Farm730,000$730,000$Link
Anton CederholmWolves (STL)D231995-02-21Yes204 Lbs6 ft2NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Anton SlepyshevWolves (STL)LW/RW241994-05-12No218 Lbs6 ft2NoNoNo1RFAPro & Farm700,000$Link
Blake WheelerWolves (STL)LW/RW311987-07-15 1:46:14 PMNo225 Lbs6 ft5NoNoNo2UFAPro & Farm5,600,000$5,600,000$Link
Brooks OrpikWolves (STL)D371981-07-15 1:46:14 AMNo219 Lbs6 ft3NoNoNo1UFAPro & Farm2,000,000$Link
Cameron SchillingWolves (STL)D281989-10-07No182 Lbs6 ft2NoNoNo2RFAPro & Farm700,000$700,000$Link
Christian JarosWolves (STL)D221996-04-02Yes201 Lbs6 ft3NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Clarke MacArthurWolves (STL)LW321986-07-15 7:46:14 AMNo192 Lbs6 ft0NoNoNo2UFAPro & Farm4,750,000$4,750,000$Link
Daniel CatenacciWolves (STL)C/LW251993-03-09No186 Lbs5 ft9NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Dean KukanWolves (STL)D251993-07-07No196 Lbs6 ft2NoNoNo1RFAPro & Farm775,000$Link
Evan McEnenyWolves (STL)D241994-05-22Yes203 Lbs6 ft2NoNoNo1RFAPro & Farm660,000$Link
Jacob MiddletonWolves (STL)D221996-01-01Yes200 Lbs6 ft3NoNoNo2RFAPro & Farm500,000$500,000$Link
James de HaasWolves (STL)D241994-05-03Yes210 Lbs6 ft4NoNoNo2RFAPro & Farm650,000$650,000$Link
Joel HanleyWolves (STL)D271991-06-08No193 Lbs6 ft0NoNoNo1RFAPro & Farm725,000$Link
Johan LarssonWolves (STL)LW251993-07-25No200 Lbs5 ft11NoNoNo1RFAPro & Farm1,100,000$Link
Kasimir KaskisuoWolves (STL)C241993-10-02No201 Lbs6 ft2NoNoNo1RFAPro & Farm930,000$Link
Kyle CriscuoloWolves (STL)C261992-05-05No170 Lbs5 ft8NoNoNo1RFAPro & Farm650,000$Link
Matej MachovskyWolves (STL)RW251993-07-25Yes191 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Matt PuempelWolves (STL)LW251993-01-23No205 Lbs6 ft1NoNoNo3RFAPro & Farm730,000$730,000$730,000$Link
Michael ChaputWolves (STL)C261992-04-09No204 Lbs6 ft2NoNoNo1RFAPro & Farm700,000$Link
Michael KaplaWolves (STL)D241994-09-19Yes200 Lbs6 ft0NoNoNo2RFAPro & Farm900,000$900,000$Link
Mikkel AagaardWolves (STL)C/LW/RW221995-10-27Yes176 Lbs5 ft11NoNoNo1RFAPro & Farm650,000$Link
Patrik NemethWolves (STL)D261992-02-08No215 Lbs6 ft3NoNoNo1RFAPro & Farm925,000$Link
Radim SimekWolves (STL)D261992-09-20No196 Lbs5 ft11NoNoNo2RFAPro & Farm700,000$700,000$Link
Ryan StantonWolves (STL)D281990-07-20No196 Lbs6 ft2NoNoNo1RFAPro & Farm700,000$Link
Stephon WilliamsWolves (STL)D251993-04-28Yes196 Lbs6 ft3NoNoNo1RFAPro & Farm600,000$Link
Yaroslav DyblenkoWolves (STL)D241993-12-28Yes195 Lbs6 ft2NoNoNo2RFAPro & Farm700,000$700,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3325.12199 Lbs6 ft21.791,196,970$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Matt PuempelKyle CriscuoloAnton Slepyshev30122
3Alex Iafallo20122
410122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Cameron Schilling40122
2Andreas EnglundEvan McEneny30122
3Dean Kukan20122
4Cameron Schilling10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Matt PuempelKyle CriscuoloAnton Slepyshev40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Cameron Schilling60122
2Andreas EnglundEvan McEneny40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Matt PuempelAlex Iafallo40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Cameron Schilling60122
2Andreas EnglundEvan McEneny40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Cameron Schilling60122
240122Andreas EnglundEvan McEneny40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Matt PuempelAlex Iafallo40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Cameron Schilling60122
2Andreas EnglundEvan McEneny40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Cameron Schilling
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Cameron Schilling
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, Dean Kukan, Andreas EnglundDean Kukan, Andreas Englund
Penalty Shots
, , Matt Puempel, Alex Iafallo,
Goalie
#1 : , #2 : Kasimir Kaskisuo


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals20200000712-51010000036-31010000046-200.000712190011240623661382762937313133.33%6266.67%0398346.99%448154.32%397452.70%915683367035
2Griffins11000000312110000003120000000000021.0003690011240303661382207529300.00%000.00%0398346.99%448154.32%397452.70%915683367035
3Monsters1000000178-1000000000001000000178-110.500713200011240433661382451420172150.00%550.00%0398346.99%448154.32%397452.70%915683367035
Since Last GM Reset412000011721-42110000067-1201000011114-330.375173148001124013536613821415062778225.00%11736.36%0398346.99%448154.32%397452.70%915683367035
Total412000011721-42110000067-1201000011114-330.375173148001124013536613821415062778225.00%11736.36%0398346.99%448154.32%397452.70%915683367035
Vs Conference412000011721-42110000067-1201000011114-330.375173148001124013536613821415062778225.00%11736.36%0398346.99%448154.32%397452.70%915683367035
Vs Division21200001712-51110000036-31010000146-230.750712190011240623661382762937313133.33%6266.67%0398346.99%448154.32%397452.70%915683367035

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
43SOL117314813514150627700
All Games
GPWLOTWOTL SOWSOLGFGA
41200011721
Home Games
GPWLOTWOTL SOWSOLGFGA
211000067
Visitor Games
GPWLOTWOTL SOWSOLGFGA
20100011114
Last 10 Games
WLOTWOTL SOWSOL
120001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
8225.00%11736.36%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
366138211240
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
398346.99%448154.32%397452.70%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
915683367035


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-09-175Griffins1Wolves3WBoxScore
3 - 2018-09-1928Wolves4 Admirals6LBoxScore
4 - 2018-09-2046 Admirals6Wolves3LBoxScore
6 - 2018-09-2264Wolves7Monsters8LXXBoxScore
7 - 2018-09-2372Ice Hogs-Wolves-
10 - 2018-09-2697Wolves-Wolves-
11 - 2018-09-27106Wolves-Griffins-
12 - 2018-09-28117Wolves-Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
15 - 2018-10-01132Monsters-Wolves-
16 - 2018-10-02138Wolves-Ice Hogs-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
3 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
3,950,000$ 3,850,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 12 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT