Wolves

GP: 22 | W: 10 | L: 10 | OTL: 2 | P: 22
GF: 45 | GA: 32 | PP%: 56.92% | PK%: 70.49%
GM : Jeff McLaren | Morale : 50 | Team Overall : 58
Next Games vs Monsters
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Matt PuempelX100.007975897275676768506665706254546850640
2Alex Iafallo (R)X100.006942947968707866406662662558586750630
3Cole BardreauXX100.006668626368717362786160605744446250590
4Kyle CriscuoloX100.006660816260798462785960605744446350590
5Nicolas KerdilesX100.007572816672585762786160645744446350590
6Nathan BeaulieuX100.007186827774698467255247662565666050650
7Andreas Borgman (R)X100.009046837774637760255348602548486150620
8Cameron SchillingX100.007569896669798653254942624044445650600
9Andreas EnglundX100.007871947471768446253739623744445450590
10Sami Niku (R)X100.006965796765717461255453615044446150590
11Evan McEneny (R)X100.007975886875575759255252654944446050590
12Dean KukanX100.005941936876607459256847582545455950580
13Radim SimekX100.007670906670667051254642624044445550580
Scratches
1Michael ChaputX100.007776787376828765806261705859596750650
2Marcus SorensenXX100.007162947559577659445670722549496850610
3Anton SlepyshevXX100.007744947572626861296162602556566550600
4Jason DickinsonXX100.008266827270528359655755602547476150580
5A.J. GreerX100.008385557278487658346455582546466050580
6JC LiponX100.006467586567697261505662585944446150580
7Michael Dal ColleX100.007874876074788456505651644844445950580
8Zach Senyshyn (R)X100.007871936771677154505054645144446050570
9Daniel CatenacciXX100.006965796565687253665250594845455750550
10Antoine Waked (R)X100.007470846770748148504348604644445650550
11Clarke MacArthurX100.007242877062323050506046644244445850520
12Mikkel Aagaard (R)XXX100.006864786464484851644156585344445550520
13Christian Jaros (R)X100.008076886376575951254741643944445550570
14Ryan StantonX100.007373736673606447253640633858585150570
15Joel HanleyX100.007267825567748052254840613846465450570
16Michael Kapla (R)X100.007873896573657048254041623944445350570
17Jacob Middleton (R)X100.007376666076687352254842614044445450570
18James de Haas (R)X100.008278906678555750254540653844445450570
19Yaroslav Dyblenko (R)X100.007475736575646946253640603844445150560
20Ahti OksanenXX100.008277956277495049454646644444445450560
21Anton Cederholm (R)X100.008376996476363541252839633744444950520
TEAM AVERAGE100.00756883687163705641525063414747595058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Adin Hill99.00626885826067616865643044446450630
2Kasimir Kaskisuo100.00605164806363626766653044446250610
Scratches
1Matej Machovsky (R)100.00574759746057606460603044445850580
2Stephon Williams (R)100.00484759754848505449493044444950510
TEAM AVERAGE99.7557536778585958636060304444585058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Benoit Groulx40404040646148CAN501250,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Matt PuempelWolves (STL)LW22131023-26020251913137949.92%1237417.0133669000010047.22%364014001.2302103223
2Nathan BeaulieuWolves (STL)D22712190895524189040377.78%2350022.7677142046000449300.00%0828000.7600353231
3Kyle CriscuoloWolves (STL)C2251419119516345519319.09%429913.6313439000000154.97%4331010001.2701001310
4Andreas BorgmanWolves (STL)D22411150311530197518305.33%2151123.2747111942000650000.00%01030000.5900021113
5Marcus SorensenWolves (STL)LW/RW796151005966153813.64%814921.3344810200000020100.00%1137012.0100000212
6Cole BardreauWolves (STL)C/RW227512-1242022158132438.64%627112.3500000000001159.90%192117000.8812112210
7Evan McEnenyWolves (STL)D224711-85630171518121422.22%1338017.29246433000035100.00%0217000.5800213002
8Anton SlepyshevWolves (STL)LW/RW925710093256238.00%510711.9503339000000027.27%11113001.3000000001
9Cameron SchillingWolves (STL)D22235-92220717209510.00%2140318.34112334000035010.00%0221000.2500112000
10Nicolas KerdilesWolves (STL)LW22134-322204326553.85%11084.9201113000000077.78%952000.7411013010
11Andreas EnglundWolves (STL)D220221151510129510.00%1929613.460000800000000.00%0115000.1400012000
12Dean KukanWolves (STL)D22011-400534140.00%51476.710000000000000.00%004000.1400000000
13Sami NikuWolves (STL)D22000214108611750.00%625811.7500000000012000.00%0213000.0000011001
14Radim SimekWolves (STL)D22000-31010326120.00%21687.660000200005000.00%005000.0000011000
Team Total or Average2805479133-243622201851756172073328.75%146397814.2122335569221000101907355.87%682115176010.672681422121013
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Adin HillWolves (STL)2210920.8913.1912784068624332100.3758220031
2Kasimir KaskisuoWolves (STL)30100.8404.71510042513000.0000022000
Team Total or Average25101020.8893.2513304072649345100.37582222031


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
A.J. GreerWolves (STL)LW211996-12-14No204 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$850,000$Link
Adin HillWolves (STL)C/LW/RW221996-05-11No202 Lbs6 ft6NoNoNo1RFAPro & Farm750,000$Link
Ahti OksanenWolves (STL)LW/D251993-03-10No207 Lbs6 ft3NoNoNo2RFAPro & Farm650,000$650,000$Link
Alex IafalloWolves (STL)LW241993-12-21Yes176 Lbs6 ft0NoNoNo3RFAPro & Farm975,000$975,000$975,000$Link
Andreas BorgmanWolves (STL)D231995-06-18Yes191 Lbs6 ft0NoNoNo4RFAPro & Farm950,000$950,000$950,000$950,000$Link
Andreas EnglundWolves (STL)D221996-01-21No189 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$850,000$Link
Antoine WakedWolves (STL)RW221996-05-17Yes194 Lbs6 ft0NoNoNo2RFAPro & Farm730,000$730,000$Link
Anton CederholmWolves (STL)D231995-02-21Yes204 Lbs6 ft2NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Anton SlepyshevWolves (STL)LW/RW241994-05-12No218 Lbs6 ft2NoNoNo1RFAPro & Farm700,000$Link
Cameron SchillingWolves (STL)D291989-10-07No182 Lbs6 ft2NoNoNo2UFAPro & Farm700,000$700,000$Link
Christian JarosWolves (STL)D221996-04-02Yes201 Lbs6 ft3NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Clarke MacArthurWolves (STL)LW321986-07-15 7:46:14 AMNo192 Lbs6 ft0NoNoNo2UFAPro & Farm4,750,000$4,750,000$Link
Cole BardreauWolves (STL)C/RW251993-07-22No185 Lbs5 ft10NoNoNo1RFAPro & Farm950,000$Link
Daniel CatenacciWolves (STL)C/LW251993-03-09No186 Lbs5 ft9NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Dean KukanWolves (STL)D251993-07-07No196 Lbs6 ft2NoNoNo1RFAPro & Farm775,000$Link
Evan McEnenyWolves (STL)D241994-05-22Yes203 Lbs6 ft2NoNoNo1RFAPro & Farm660,000$Link
JC LiponWolves (STL)RW251993-07-10No183 Lbs6 ft0NoNoNo2RFAPro & Farm700,000$700,000$Link
Jacob MiddletonWolves (STL)D221996-01-01Yes200 Lbs6 ft3NoNoNo2RFAPro & Farm500,000$500,000$Link
James de HaasWolves (STL)D241994-05-03Yes210 Lbs6 ft4NoNoNo2RFAPro & Farm650,000$650,000$Link
Jason DickinsonWolves (STL)C/LW231995-07-03No205 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
Joel HanleyWolves (STL)D271991-06-08No193 Lbs6 ft0NoNoNo1RFAPro & Farm725,000$Link
Kasimir KaskisuoWolves (STL)C251993-10-02No201 Lbs6 ft2NoNoNo1RFAPro & Farm930,000$Link
Kyle CriscuoloWolves (STL)C261992-05-05No170 Lbs5 ft8NoNoNo1RFAPro & Farm650,000$Link
Marcus SorensenWolves (STL)LW/RW261992-04-07No175 Lbs5 ft11NoNoNo3RFAPro & Farm940,000$940,000$940,000$Link
Matej MachovskyWolves (STL)RW251993-07-25Yes191 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Matt PuempelWolves (STL)LW251993-01-23No205 Lbs6 ft1NoNoNo3RFAPro & Farm730,000$730,000$730,000$Link
Michael ChaputWolves (STL)C261992-04-09No204 Lbs6 ft2NoNoNo1RFAPro & Farm700,000$Link
Michael Dal ColleWolves (STL)LW221996-06-19No198 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$950,000$Link
Michael KaplaWolves (STL)D241994-09-19Yes200 Lbs6 ft0NoNoNo2RFAPro & Farm900,000$900,000$Link
Mikkel AagaardWolves (STL)C/LW/RW231995-10-27Yes176 Lbs5 ft11NoNoNo1RFAPro & Farm650,000$Link
Nathan BeaulieuWolves (STL)D241993-12-05No205 Lbs6 ft2NoNoNo3RFAPro & Farm2,400,000$2,400,000$2,400,000$Link
Nicolas KerdilesWolves (STL)LW241994-10-01No191 Lbs6 ft2NoNoNo4RFAPro & Farm655,000$655,000$655,000$655,000$Link
Radim SimekWolves (STL)D261992-09-20No196 Lbs5 ft11NoNoNo2RFAPro & Farm700,000$700,000$Link
Ryan StantonWolves (STL)D281990-07-20No196 Lbs6 ft2NoNoNo1RFAPro & Farm700,000$Link
Sami NikuWolves (STL)D221996-10-10Yes176 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Stephon WilliamsWolves (STL)D251993-04-28Yes196 Lbs6 ft3NoNoNo1RFAPro & Farm600,000$Link
Yaroslav DyblenkoWolves (STL)D241993-12-28Yes195 Lbs6 ft2NoNoNo2RFAPro & Farm700,000$700,000$Link
Zach SenyshynWolves (STL)RW211997-03-30Yes192 Lbs6 ft1NoNoNo3RFAPro & Farm950,000$950,000$950,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3824.34194 Lbs6 ft12.00887,368$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Matt PuempelKyle Criscuolo30122
3Cole Bardreau20122
4Nicolas KerdilesMatt Puempel10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuAndreas Borgman40122
2Cameron SchillingEvan McEneny30122
3Andreas EnglundSami Niku20122
4Radim SimekDean Kukan10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Matt PuempelKyle Criscuolo40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuAndreas Borgman60122
2Cameron SchillingEvan McEneny40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Matt Puempel40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuAndreas Borgman60122
2Cameron SchillingEvan McEneny40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Nathan BeaulieuAndreas Borgman60122
240122Cameron SchillingEvan McEneny40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Matt Puempel40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Nathan BeaulieuAndreas Borgman60122
2Cameron SchillingEvan McEneny40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Nathan BeaulieuAndreas Borgman
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Nathan BeaulieuAndreas Borgman
Extra Forwards
Normal PowerPlayPenalty Kill
Nicolas Kerdiles, Cole Bardreau, Nicolas Kerdiles, Cole Bardreau
Extra Defensemen
Normal PowerPlayPenalty Kill
Andreas Englund, Sami Niku, Radim SimekAndreas EnglundSami Niku, Radim Simek
Penalty Shots
, , Matt Puempel, ,
Goalie
#1 : Adin Hill, #2 : Kasimir Kaskisuo


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals321000001851322000000162141010000023-140.66718304800152838312821425332013843252639777.78%6266.67%022745150.33%22042751.52%19937652.93%491329525164313151
2Barracuda1000000145-11000000145-10000000000010.500461000152838342214253320133710821000.00%4250.00%122745150.33%22042751.52%19937652.93%491329525164313151
3Bears11000000532110000005320000000000021.000581300152838337214253320133813211522100.00%3166.67%022745150.33%22042751.52%19937652.93%491329525164313151
4Condors2020000059-4000000000002020000059-400.000510150015283835821425332013542754246350.00%7442.86%022745150.33%22042751.52%19937652.93%491329525164313151
5Griffins3210000010912110000078-11100000031240.66710172700152838388214253320138428474712541.67%6183.33%022745150.33%22042751.52%19937652.93%491329525164313151
6Ice Hogs303000001015-500000000000303000001015-500.00010172700152838311121425332013892231657457.14%8362.50%022745150.33%22042751.52%19937652.93%491329525164313151
7Monsters1000000134-11000000134-10000000000010.500358001528383452142533201322640186350.00%5180.00%022745150.33%22042751.52%19937652.93%491329525164313151
8Pirates1010000025-3000000000001010000025-300.0002460015283833421425332013311174142150.00%20100.00%022745150.33%22042751.52%19937652.93%491329525164313151
9Rampage1010000013-2000000000001010000013-200.00012300152838343214253320132712562311100.00%3166.67%022745150.33%22042751.52%19937652.93%491329525164313151
10Reign11000000422110000004220000000000021.0004711001528383362142533201318711135360.00%30100.00%022745150.33%22042751.52%19937652.93%491329525164313151
Since Last GM Reset22101000002817471062000024532131248000003642-6220.5008114222300152838379221425332013649222472379653756.92%611870.49%122745150.33%22042751.52%19937652.93%491329525164313151
Total22101000002817471062000024532131248000003642-6220.5008114222300152838379221425332013649222472379653756.92%611870.49%122745150.33%22042751.52%19937652.93%491329525164313151
Vs Conference199800002726111851000023824141147000003437-3200.5267212719900152838368121425332013547186373343593457.63%541670.37%122745150.33%22042751.52%19937652.93%491329525164313151
Vs Division1175000014632143410000120515834000002627-1150.682468212800152838341221425332013332108213220302066.67%29872.41%022745150.33%22042751.52%19937652.93%491329525164313151
15Wild11000000321000000000001100000032121.000369001528383232142533201321211184250.00%30100.00%022745150.33%22042751.52%19937652.93%491329525164313151
16Wolf Pack1010000025-31010000025-30000000000000.0002350015283834021425332013331247200.00%2150.00%022745150.33%22042751.52%19937652.93%491329525164313151
17Wolves3300000014771100000043122000000104661.000142741001528383107214253320131114063519666.67%9277.78%022745150.33%22042751.52%19937652.93%491329525164313151

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2222W18114222379264922247237900
All Games
GPWLOTWOTL SOWSOLGFGA
22101000028174
Home Games
GPWLOTWOTL SOWSOLGFGA
106200024532
Visitor Games
GPWLOTWOTL SOWSOLGFGA
124800003642
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
653756.92%611870.49%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
214253320131528383
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
22745150.33%22042751.52%19937652.93%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
491329525164313151


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-023Monsters4Wolves3LXXBoxScore
2 - 2018-10-037Wolves3Wolves2WBoxScore
5 - 2018-10-0628Wolves6Ice Hogs7LBoxScore
7 - 2018-10-0847Wolves7Wolves2WBoxScore
9 - 2018-10-1056 Admirals1Wolves9WBoxScore
11 - 2018-10-1273Wolves3Condors5LBoxScore
13 - 2018-10-1485Wolves3Wolves4WBoxScore
15 - 2018-10-16105Wolves2 Admirals3LBoxScore
16 - 2018-10-17117 Admirals1Wolves7WBoxScore
19 - 2018-10-20134Wolves1Ice Hogs3LBoxScore
21 - 2018-10-22148Wolves3Griffins1WBoxScore
22 - 2018-10-23154Barracuda5Wolves4LXXBoxScore
25 - 2018-10-26177Griffins4Wolves2LBoxScore
27 - 2018-10-28191Wolves1Rampage3LBoxScore
29 - 2018-10-30204Wolves3Wild2WBoxScore
30 - 2018-10-31215Reign2Wolves4WBoxScore
33 - 2018-11-03238Wolves2Pirates5LBoxScore
35 - 2018-11-05245Griffins4Wolves5WBoxScore
38 - 2018-11-08272Wolf Pack5Wolves2LBoxScore
40 - 2018-11-10285Wolves3Ice Hogs5LBoxScore
42 - 2018-11-12299Wolves2Condors4LBoxScore
43 - 2018-11-13308Bears3Wolves5WBoxScore
46 - 2018-11-16331Wolves-Reign-
47 - 2018-11-17338Gulls-Wolves-
50 - 2018-11-20364Wolves-Falcons-
51 - 2018-11-21370Americans-Wolves-
54 - 2018-11-24394Wolves-Gulls-
55 - 2018-11-25401Checkers-Wolves-
58 - 2018-11-28419Wolves-Barracuda-
60 - 2018-11-30432 Admirals-Wolves-
62 - 2018-12-02447Wolves-Heat-
64 - 2018-12-04460Reign-Wolves-
66 - 2018-12-06475Wolves-Senators-
68 - 2018-12-08489Wolves- Admirals-
69 - 2018-12-09496Condors-Wolves-
74 - 2018-12-14524Wolves-Wolves-
76 - 2018-12-16537Wolves-Penguins-
78 - 2018-12-18551Wolves-Wild-
79 - 2018-12-19559 Admirals-Wolves-
82 - 2018-12-22582Wolves-Bruins-
83 - 2018-12-23589Condors-Wolves-
86 - 2018-12-26615Monsters-Wolves-
87 - 2018-12-27623Wolves-Devils-
90 - 2018-12-30641Wolves-Monsters-
91 - 2018-12-31651Barracuda-Wolves-
93 - 2019-01-02672Wolves-Gulls-
95 - 2019-01-04680Stars-Wolves-
99 - 2019-01-08708Phantoms-Wolves-
101 - 2019-01-10728Wolves-Sound Tigers-
102 - 2019-01-11739Monsters-Wolves-
105 - 2019-01-14762Wolves-Monsters-
106 - 2019-01-15772Griffins-Wolves-
109 - 2019-01-18792Wolves-Crunch-
111 - 2019-01-20802Rampage-Wolves-
113 - 2019-01-22815Wolves-Stars-
115 - 2019-01-24833Heat-Wolves-
120 - 2019-01-29863Wolves-Falcons-
121 - 2019-01-30870Wild-Wolves-
124 - 2019-02-02891Comets-Wolves-
129 - 2019-02-07920IceCaps-Wolves-
130 - 2019-02-08931Wolves-Griffins-
133 - 2019-02-11952Wolves-Wolves-
135 - 2019-02-13961Wolves-Wolves-
137 - 2019-02-15981Ice Hogs-Wolves-
140 - 2019-02-181005Marlies-Wolves-
142 - 2019-02-201018Wolves-Comets-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221032Wolves-Moose-
146 - 2019-02-241041Barracuda-Wolves-
148 - 2019-02-261061Wolves-Stars-
150 - 2019-02-281073Heat-Wolves-
154 - 2019-03-041098Rampage-Wolves-
156 - 2019-03-061109Wolves-Comets-
158 - 2019-03-081126Falcons-Wolves-
160 - 2019-03-101133Wolves-Rampage-
164 - 2019-03-141162Ice Hogs-Wolves-
166 - 2019-03-161174Wolves-Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
3,372,000$ 3,255,800$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
903,495$ 0$ 903,495$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 20,071$ 2,468,733$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201822101000002817471062000024532131248000003642-6228114222300152838379221425332013649222472379653756.92%611870.49%122745150.33%22042751.52%19937652.93%491329525164313151
Total Regular Season22101000002817471062000024532131248000003642-6228114222300152838379221425332013649222472379653756.92%611870.49%122745150.33%22042751.52%19937652.93%491329525164313151