Crunch

GP: 23 | W: 9 | L: 9 | OTL: 5 | P: 23
GF: 25 | GA: 28 | PP%: 21.88% | PK%: 76.12%
GM : Robert Jacklin | Morale : 50 | Team Overall : 54
Next Games vs Moose
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Justin Scott (R)XX100.007374726274738050634747604544445550550
2Carter BancksX100.006566646266687253505547574544445550540
3Julius Nattinen (R)X100.008176936776505149614746644444445550540
4Tyler RandellX100.006772556472687448504446574446465350530
5Nicolas Meloche (R)X100.007577716277707648253942614044445350570
6Blake Siebenaler (R)X100.008175966675535549253646644444445550560
7Aaron HarstadX100.00577364645957625425514656504545150540
8Brycen Martin (R)X100.007673835873505341253839593744444850530
Scratches
1Sergey Zborovskiy (R)X91.737374726874495141252839583744444850530
TEAM AVERAGE99.08727374647260644839434460434444475054
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Tom McCollum100.00585569856060556259583044445850590
2Samuel Montembeault (R)99.00537088784956505851513044445550560
Scratches
1Parker Milner100.00444253744242505145463044444650480
TEAM AVERAGE99.6752567079505352575252304444535054
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Sergey ZborovskiyCrunch (TB )D23033-101552279580.00%736715.9800001000000026.67%1538000.1600100114
2Brycen MartinCrunch (TB )D23022-94430171215270.00%835715.5400000000000042.86%718000.1100312101
3Aaron HarstadCrunch (TB )D23011-2692511697110.00%533314.490000000000000.00%316000.0601104010
4Blake SiebenalerCrunch (TB )D23011-25050101112430.00%2232214.0100000000210020.00%5120000.0601316101
Team Total or Average92077-2317811060364518290.00%42138015.0000002000220026.67%30642000.10028212326
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Samuel MontembeaultCrunch (TB )239950.8932.7913560163588368100.66732323331
Team Total or Average239950.8932.7913560163588368100.66732323331


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Aaron HarstadCrunch (TB )D261992-04-27No198 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$Link
Blake SiebenalerCrunch (TB )D221996-02-26Yes208 Lbs6 ft1NoNoNo2RFAPro & Farm700,000$700,000$Link
Brycen MartinCrunch (TB )D221996-05-09Yes198 Lbs6 ft2NoNoNo2RFAPro & Farm575,000$575,000$Link
Carter BancksCrunch (TB )LW281990-08-09No181 Lbs5 ft11NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Julius NattinenCrunch (TB )C211997-01-14Yes191 Lbs6 ft2NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Justin ScottCrunch (TB )C/RW231995-08-13Yes202 Lbs6 ft1NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Nicolas MelocheCrunch (TB )D211997-07-18Yes204 Lbs6 ft3NoNoNo3RFAPro & Farm850,000$850,000$850,000$Link
Parker MilnerCrunch (TB )C281990-09-06No192 Lbs6 ft0NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Samuel MontembeaultCrunch (TB )LW221996-10-30Yes192 Lbs6 ft3NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Sergey ZborovskiyCrunch (TB )D211997-02-21Yes197 Lbs6 ft4NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Tom McCollumCrunch (TB )C281989-12-06No226 Lbs6 ft2NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Tyler RandellCrunch (TB )RW271991-06-14No198 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
1224.08199 Lbs6 ft22.67677,083$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Brycen Martin30122
320122
4Blake SiebenalerAaron Harstad10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Blake SiebenalerAaron Harstad30122
3Brycen Martin20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Brycen Martin40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Blake SiebenalerAaron Harstad40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Blake SiebenalerAaron Harstad40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Blake SiebenalerAaron Harstad40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Blake SiebenalerAaron Harstad40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, , ,
Extra Defensemen
Normal PowerPlayPenalty Kill
, Brycen Martin, Brycen Martin,
Penalty Shots
, , , ,
Goalie
#1 : , #2 : Samuel Montembeault


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Bears3200100013761100000032121001000105561.0001321340062724276101172181218524373411327.27%6183.33%015933347.75%17434750.14%16135944.85%603437490168309150
2Bruins11000000321000000000001100000032121.00036900627242151011721812122527100.00%10100.00%015933347.75%17434750.14%16135944.85%603437490168309150
3Checkers3020010049-51000010023-12020000026-410.1674812006272425110117218121883465515120.00%10370.00%015933347.75%17434750.14%16135944.85%603437490168309150
4Devils10001000211000000000001000100021121.00023500627242291011721812113223154250.00%40100.00%015933347.75%17434750.14%16135944.85%603437490168309150
5Ice Hogs1010000034-11010000034-10000000000000.00035800627242121011721812125681322100.00%4250.00%015933347.75%17434750.14%16135944.85%603437490168309150
6IceCaps211000005321010000012-11100000041320.5005101500627242411011721812141192525900.00%5260.00%015933347.75%17434750.14%16135944.85%603437490168309150
7Moose42200000912-3211000005502110000047-340.5009172600627242791011721812112438111547228.57%13192.31%115933347.75%17434750.14%16135944.85%603437490168309150
8Penguins1000010012-11000010012-10000000000010.50012300627242201011721812131132018300.00%5180.00%015933347.75%17434750.14%16135944.85%603437490168309150
9Pirates30200100712-51010000045-12010010037-410.16771320006272427810117218121834145486116.67%10460.00%015933347.75%17434750.14%16135944.85%603437490168309150
Since Last GM Reset2379024015965-61034002012528-31345022003437-3230.500591071660162724247210117218121604210389312641421.88%671676.12%115933347.75%17434750.14%16135944.85%603437490168309150
11Sound Tigers1010000023-1000000000001010000023-100.00024600627242221011721812115323105120.00%4250.00%015933347.75%17434750.14%16135944.85%603437490168309150
12Stars1000000145-11000000145-10000000000010.500471100627242161011721812130919134250.00%20100.00%015933347.75%17434750.14%16135944.85%603437490168309150
Total2379024015965-61034002012528-31345022003437-3230.500591071660162724247210117218121604210389312641421.88%671676.12%115933347.75%17434750.14%16135944.85%603437490168309150
Vs Conference2068024005056-6723002001619-31345022003437-3200.50050911410062724243410117218121534188353276551018.18%591476.27%115933347.75%17434750.14%16135944.85%603437490168309150
15Wild11000000202110000002020000000000021.000246016272421010117218121157910300.00%20100.00%015933347.75%17434750.14%16135944.85%603437490168309150
16Wolf Pack1000010045-1000000000001000010045-110.5004711006272422310117218121329214400.00%10100.00%015933347.75%17434750.14%16135944.85%603437490168309150

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2323W15910716647260421038931201
All Games
GPWLOTWOTL SOWSOLGFGA
237924015965
Home Games
GPWLOTWOTL SOWSOLGFGA
103402012528
Visitor Games
GPWLOTWOTL SOWSOLGFGA
134522003437
Last 10 Games
WLOTWOTL SOWSOL
450001
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
641421.88%671676.12%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
10117218121627242
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
15933347.75%17434750.14%16135944.85%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
603437490168309150


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-021Crunch1Moose5LBoxScore
3 - 2018-10-0419Bears2Crunch3WBoxScore
5 - 2018-10-0632Crunch2Pirates3LXBoxScore
6 - 2018-10-0743Crunch3Moose2WBoxScore
8 - 2018-10-0953Crunch4Wolf Pack5LXBoxScore
9 - 2018-10-1061Checkers3Crunch2LXBoxScore
12 - 2018-10-1384Moose2Crunch3WBoxScore
14 - 2018-10-1599Crunch1Checkers4LBoxScore
15 - 2018-10-16108Crunch2Devils1WXBoxScore
17 - 2018-10-18123Pirates5Crunch4LBoxScore
21 - 2018-10-22147Crunch1Pirates4LBoxScore
22 - 2018-10-23155Penguins2Crunch1LXBoxScore
25 - 2018-10-26175Crunch3Bruins2WBoxScore
26 - 2018-10-27186Ice Hogs4Crunch3LBoxScore
29 - 2018-10-30208Crunch1Checkers2LBoxScore
30 - 2018-10-31216Wild0Crunch2WBoxScore
32 - 2018-11-02232Crunch4IceCaps1WBoxScore
35 - 2018-11-05246IceCaps2Crunch1LBoxScore
37 - 2018-11-07260Crunch2Sound Tigers3LBoxScore
39 - 2018-11-09276Moose3Crunch2LBoxScore
41 - 2018-11-11292Crunch4Bears3WXBoxScore
43 - 2018-11-13306Stars5Crunch4LXXBoxScore
45 - 2018-11-15322Crunch6Bears2WBoxScore
46 - 2018-11-16336Crunch-Monsters-
47 - 2018-11-17341Rampage-Crunch-
51 - 2018-11-21366Crunch-Penguins-
52 - 2018-11-22373Reign-Crunch-
55 - 2018-11-25396Crunch-Wolf Pack-
56 - 2018-11-26404Senators-Crunch-
59 - 2018-11-29430Sound Tigers-Crunch-
61 - 2018-12-01438Crunch-Checkers-
64 - 2018-12-04461Bruins-Crunch-
67 - 2018-12-07485Crunch-Bruins-
69 - 2018-12-09494Pirates-Crunch-
72 - 2018-12-12513Crunch-Phantoms-
74 - 2018-12-14523Penguins-Crunch-
76 - 2018-12-16540Crunch-Pirates-
78 - 2018-12-18553Wolves-Crunch-
81 - 2018-12-21577Crunch-Rampage-
82 - 2018-12-22585Ice Hogs-Crunch-
85 - 2018-12-25605Crunch-Condors-
87 - 2018-12-27617Gulls-Crunch-
89 - 2018-12-29638Crunch-IceCaps-
90 - 2018-12-30647Checkers-Crunch-
93 - 2019-01-02674Sound Tigers-Crunch-
94 - 2019-01-03678Crunch-Marlies-
97 - 2019-01-06694Crunch-Comets-
99 - 2019-01-08710Bears-Crunch-
102 - 2019-01-11735Crunch-Falcons-
103 - 2019-01-12743Heat-Crunch-
106 - 2019-01-15766Devils-Crunch-
109 - 2019-01-18792Wolves-Crunch-
111 - 2019-01-20801Crunch-Wolf Pack-
114 - 2019-01-23827Marlies-Crunch-
118 - 2019-01-27850Barracuda-Crunch-
120 - 2019-01-29865Crunch-Marlies-
122 - 2019-01-31878Crunch-Devils-
123 - 2019-02-01888Bears-Crunch-
127 - 2019-02-05910Crunch-Devils-
129 - 2019-02-07922Heat-Crunch-
132 - 2019-02-10942Wolf Pack-Crunch-
135 - 2019-02-13960Crunch-Americans-
137 - 2019-02-15978Wild-Crunch-
138 - 2019-02-16984Crunch- Admirals-
140 - 2019-02-181006Americans-Crunch-
143 - 2019-02-211024Crunch-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231038Monsters-Crunch-
147 - 2019-02-251053Crunch-Americans-
149 - 2019-02-271064Crunch-Moose-
151 - 2019-03-011076Wolf Pack-Crunch-
152 - 2019-03-021087Crunch-Moose-
154 - 2019-03-041102Bruins-Crunch-
157 - 2019-03-071117Crunch-Senators-
160 - 2019-03-101134Phantoms-Crunch-
163 - 2019-03-131153Crunch-Griffins-
165 - 2019-03-151167Phantoms-Crunch-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
812,500$ 507,500$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
222,686$ 0$ 222,686$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 4,836$ 594,828$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182379024015965-61034002012528-31345022003437-323591071660162724247210117218121604210389312641421.88%671676.12%115933347.75%17434750.14%16135944.85%603437490168309150
Total Regular Season2379024015965-61034002012528-31345022003437-323591071660162724247210117218121604210389312641421.88%671676.12%115933347.75%17434750.14%16135944.85%603437490168309150