Phantoms

GP: 4 | W: 2 | L: 2 | OTL: 0 | P: 4
GF: 16 | GA: 17 | PP%: 40.00% | PK%: 61.11%
GM : Ian Henderson | Morale : 49 | Team Overall : 59
Next Games vs Wolf Pack
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Kyle ConnorX100.005940928666749278337788572556567853710
2Nicolas DeslauriersX100.009998747178626758555770742565657050650
3Daniel SprongX96.006967726767676769506469646647476849630
4Anders Bjork (R)XX99.006742938068625865447264522550506549620
5Evgeny Svechnikov (R)XX99.007644837379528956316266572545456549610
6Brandon MashinterX96.008180826580677058505557665444446249600
7Jordan SchroederX100.006942937462508157695557555361626049590
8Shane PrinceX100.006987787671615662415758572559606049590
9Cam DarcyX100.006868686568626359746053605044445852580
10Adam Brooks (R)X100.007464986364727852654851614844445850570
11Matt TennysonX98.007344847076757673254047692558585949650
12Vince DunnX98.006341918168729075256049572553536249640
13Darren Raddysh (R)X100.007973946573687253254051644844445949600
14Dominik Masin (R)X100.007070697170788550254046594444445549600
15Josh BrownX100.007881726281758346253739623744445249590
16Brenden KichtonX100.006966766066748051255939583744445349580
17Julius BergmanX100.007372746272737951253751604844445649580
18Jake Bischoff (R)X100.007571856471687350254242614044445449580
Scratches
1Dante Salituro (R)X100.007061905561515250634353595044445549520
2Raman HrabarenkaX100.00597966726264675525485258504646149570
3Luc Snuggerud (R)X100.007471826871505053254646614444445549570
4Nelson Nogier (R)X100.007672866572495145253539603744445049550
5Jonathan RacineX100.006272376672707744254339533744444849550
6Linus Arnesson (R)X100.007569896769525543254139593744445049550
7Reece ScarlettX100.006766696266657046253640563844444949550
TEAM AVERAGE99.44726680687065715637505260404848564959
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Linus Ullmark98.00678099856672597165643046466749670
2Michael Houser100.0056696562627664656160455555149620
Scratches
1Daniel Altshuller100.00555366815756515955543044445549560
2Ken Appleby100.00525974844955535854543044445449560
TEAM AVERAGE99.5058657678596557635958344747444960
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Daniel SprongPhantoms (PHI)RW3641014065205730.00%37123.70123251011100010.00%1041012.8100000110
2Matt TennysonPhantoms (PHI)D41672604562316.67%710125.4003309011012000.00%004001.3800000000
3Brandon MashinterPhantoms (PHI)C433612410761361323.08%38521.27213213101360046.67%6034001.4100110000
4Jordan SchroederPhantoms (PHI)C424640037126616.67%26215.6301116000000051.58%9510001.9200000101
5Anders BjorkPhantoms (PHI)LW/RW414510046941111.11%67318.4101116000240041.67%1243001.3600000001
6Vince DunnPhantoms (PHI)D4055122102681180.00%89824.5502229022014000.00%005001.0200011000
7Cam DarcyPhantoms (PHI)C41452101053142107.14%35313.4110131000000060.00%2011001.8600110010
8Evgeny SvechnikovPhantoms (PHI)LW/RW41342206511389.09%07117.8000006000020057.14%733001.1200000000
9Josh BrownPhantoms (PHI)D41124554862416.67%27518.901122900007000.00%001000.5300010000
10Shane PrincePhantoms (PHI)LW4202000331621012.50%05714.50000010000300100.00%261000.6900000000
11Dominik MasinPhantoms (PHI)D40222135442230.00%07318.3100001100004000.00%000000.5500100000
12Darren RaddyshPhantoms (PHI)D4011200062210.00%24611.570000000006000.00%000000.4300000000
13Brenden KichtonPhantoms (PHI)D4000-120000000.00%0174.450000000000000.00%000000.0000000000
14Julius BergmanPhantoms (PHI)D4000-100101010.00%2184.550000000000000.00%001000.0000000000
15Jake BischoffPhantoms (PHI)D4000200110110.00%04511.450000000003000.00%112000.0000000000
Team Total or Average591837552288405065120488615.00%3895116.135111613812356760048.79%2072326011.1600341222
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Linus UllmarkPhantoms (PHI)42100.8504.86210001711352000.000040000
2Michael HouserPhantoms (PHI)10100.8674.1429002158000.000004000
Team Total or Average52200.8524.75240001912860000.000044000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam BrooksPhantoms (PHI)C221996-05-06Yes174 Lbs5 ft10NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Anders BjorkPhantoms (PHI)LW/RW221996-08-05Yes186 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Brandon MashinterPhantoms (PHI)C291989-09-20No212 Lbs6 ft4NoNoNo2UFAPro & Farm650,000$650,000$Link
Brenden KichtonPhantoms (PHI)D261992-06-17No185 Lbs5 ft10NoNoNo2RFAPro & Farm700,000$700,000$Link
Cam DarcyPhantoms (PHI)C241994-03-02No186 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$Link
Daniel AltshullerPhantoms (PHI)C/LW/RW241994-07-24No205 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$Link
Daniel SprongPhantoms (PHI)RW211997-03-17No180 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$Link
Dante SalituroPhantoms (PHI)C211996-11-15Yes176 Lbs5 ft8NoNoNo1RFAPro & Farm725,000$Link
Darren RaddyshPhantoms (PHI)D221996-02-28Yes182 Lbs6 ft0NoNoNo2RFAPro & Farm730,000$730,000$Link
Dominik MasinPhantoms (PHI)D221996-01-31Yes198 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$850,000$Link
Evgeny SvechnikovPhantoms (PHI)LW/RW211996-10-30Yes199 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$900,000$Link
Jake BischoffPhantoms (PHI)D241994-07-25Yes194 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Jonathan RacinePhantoms (PHI)D251993-05-28No194 Lbs6 ft2NoNoNo2RFAPro & Farm660,000$660,000$Link
Jordan SchroederPhantoms (PHI)C261991-09-29No184 Lbs5 ft9NoNoNo1RFAPro & Farm725,000$Link
Josh BrownPhantoms (PHI)D241994-01-21No213 Lbs6 ft5NoNoNo1RFAPro & Farm500,000$Link
Julius BergmanPhantoms (PHI)D221995-11-02No205 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$Link
Ken ApplebyPhantoms (PHI)LW231995-04-10No207 Lbs6 ft4NoNoNo4RFAPro & Farm850,000$850,000$850,000$850,000$Link
Kyle ConnorPhantoms (PHI)LW211996-12-09No182 Lbs6 ft1NoNoNo2RFAPro & Farm900,000$900,000$Link
Linus ArnessonPhantoms (PHI)D241994-09-21Yes188 Lbs6 ft1NoNoNo1RFAPro & Farm817,500$Link
Linus UllmarkPhantoms (PHI)LW/RW251993-07-31No221 Lbs6 ft4NoNoNo1RFAPro & Farm500,000$Link
Luc SnuggerudPhantoms (PHI)D231995-09-18Yes184 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$500,000$Link
Matt TennysonPhantoms (PHI)D271991-04-23No205 Lbs6 ft2NoNoNo1RFAPro & Farm725,000$Link
Michael HouserPhantoms (PHI)C261992-09-12No185 Lbs6 ft1NoNoNo1RFAPro & Farm585,000$Link
Nelson NogierPhantoms (PHI)D221996-05-26Yes191 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Nicolas DeslauriersPhantoms (PHI)LW271991-02-22No216 Lbs6 ft1NoNoNo3RFAPro & Farm775,000$775,000$775,000$Link
Raman HrabarenkaPhantoms (PHI)D261992-08-23No212 Lbs6 ft3NoNoNo1RFAPro & Farm725,000$Link
Reece ScarlettPhantoms (PHI)D251993-03-30No175 Lbs6 ft1NoNoNo2RFAPro & Farm675,000$675,000$Link
Shane PrincePhantoms (PHI)LW251992-11-15No185 Lbs5 ft11NoNoNo2RFAPro & Farm950,000$950,000$Link
Vince DunnPhantoms (PHI)D211996-10-28No187 Lbs6 ft0NoNoNo2RFAPro & Farm800,000$800,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2923.79193 Lbs6 ft11.79703,190$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brandon Mashinter40122
2Anders BjorkJordan SchroederEvgeny Svechnikov30122
3Shane PrinceCam Darcy20122
4Anders BjorkEvgeny Svechnikov10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonVince Dunn40122
2Josh BrownDominik Masin30122
3Darren RaddyshJake Bischoff20122
4Julius BergmanBrenden Kichton10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Brandon Mashinter60122
2Anders BjorkJordan SchroederEvgeny Svechnikov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonVince Dunn60122
2Josh BrownDominik Masin40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Anders BjorkEvgeny Svechnikov40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonVince Dunn60122
2Josh BrownDominik Masin40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
160122Matt TennysonVince Dunn60122
240122Josh BrownDominik Masin40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Anders BjorkEvgeny Svechnikov40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Matt TennysonVince Dunn60122
2Josh BrownDominik Masin40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Brandon MashinterMatt TennysonVince Dunn
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Brandon MashinterMatt TennysonVince Dunn
Extra Forwards
Normal PowerPlayPenalty Kill
Shane Prince, Cam Darcy, Brandon MashinterShane Prince, Cam DarcyBrandon Mashinter
Extra Defensemen
Normal PowerPlayPenalty Kill
, Darren Raddysh, Jake BischoffDarren Raddysh, Jake Bischoff
Penalty Shots
, , Anders Bjork, Evgeny Svechnikov, Brandon Mashinter
Goalie
#1 : Linus Ullmark, #2 : Michael Houser


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Since Last GM Reset4220000024195312000001617-11100000082640.5002440640061170133405538012849966515640.00%18761.11%3357447.30%488556.47%388445.24%794690357033
Total4220000024195312000001617-11100000082640.5002440640061170133405538012849966515640.00%18761.11%3357447.30%488556.47%388445.24%794690357033
Vs Conference4220000024195312000001617-11100000082640.5002440640061170133405538012849966515640.00%18761.11%3357447.30%488556.47%388445.24%794690357033
Vs Division4120000024195312000001617-11000000082620.2502440640061170133405538012849966515640.00%18761.11%3357447.30%488556.47%388445.24%794690357033

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
44W124406413312849966500
All Games
GPWLOTWOTL SOWSOLGFGA
42200002419
Home Games
GPWLOTWOTL SOWSOLGFGA
31200001617
Visitor Games
GPWLOTWOTL SOWSOLGFGA
110000082
Last 10 Games
WLOTWOTL SOWSOL
220000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
15640.00%18761.11%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
405538061170
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
357447.30%488556.47%388445.24%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
794690357033


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-09-1814Wolf Pack6Phantoms4LBoxScore
3 - 2018-09-1929Phantoms8Bears2WBoxScore
4 - 2018-09-2044Sound Tigers7Phantoms5LBoxScore
6 - 2018-09-2266Wolf Pack4Phantoms7WBoxScore
7 - 2018-09-2369Phantoms-Penguins-
8 - 2018-09-2482Phantoms-Wolf Pack-
11 - 2018-09-27102Devils-Phantoms-
Trade Deadline --- Trades can’t be done after this day is simulated!
15 - 2018-10-01131Penguins-Phantoms-
16 - 2018-10-02142Phantoms-Sound Tigers-
17 - 2018-10-03151Phantoms-Devils-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
2 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,039,250$ 1,941,550$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 12 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT