Phantoms

GP: 21 | W: 9 | L: 9 | OTL: 3 | P: 21
GF: 41 | GA: 36 | PP%: 42.31% | PK%: 66.13%
GM : Ian Henderson | Morale : 50 | Team Overall : 58
Next Games vs Rampage
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Nicolas DeslauriersX100.009998747178626758555770742565657050640
2Daniel SprongX100.006967726767676769506469646647476850620
3Anders Bjork (R)XX100.006742938068625865447264522550506550610
4Evgeny Svechnikov (R)XX100.007644837379528956316266572545456550600
5Jordan SchroederX100.006942937462508157695557555361626050580
6Shane PrinceX100.006987787671615662415758572559606050580
7Cam DarcyX100.006868686568626359746053605044445850570
8Adam Brooks (R)X100.007464986364727852654851614844445850560
9Darren Raddysh (R)X100.007973946573687253254051644844445950590
10Dominik Masin (R)X100.007070697170788550254046594444445550590
11Josh BrownX100.007881726281758346253739623744445250580
12Brenden KichtonX100.006966766066748051255939583744445350570
13Julius BergmanX100.007372746272737951253751604844445650570
14Jake Bischoff (R)X100.007571856471687350254242614044445450570
15Raman HrabarenkaX100.00597966726264675525485258504646150560
16Luc Snuggerud (R)X100.007471826871505053254646614444445550560
Scratches
1Dante Salituro (R)X100.007061905561515250634353595044445550510
2Vince DunnX100.006341918168729075256049572553536250630
3Nelson Nogier (R)X100.007672866572495145253539603744445050540
4Jonathan RacineX100.006272376672707744254339533744444850540
5Linus Arnesson (R)X100.007569896769525543254139593744445050540
6Reece ScarlettX100.006766696266657046253640563844444950540
TEAM AVERAGE100.00726779687064705437495159404747555058
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Linus Ullmark100.00678099856672597165643046466750660
2Michael Houser100.0056696562627664656160455555150620
Scratches
1Daniel Altshuller100.00555366815756515955543044445550560
2Ken Appleby100.00525974844955535854543044445450560
TEAM AVERAGE100.0058657678596557635958344747445060
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Vince DunnPhantoms (PHI)D1892231-8607810248428.82%1545825.49813213261000245210.00%0515001.3500000244
2Anders BjorkPhantoms (PHI)LW/RW2161016-60012148618556.98%1432815.6403326000021038.71%31324000.9700000110
3Shane PrincePhantoms (PHI)LW215813496501376520377.69%422810.8710112000000040.00%15158001.1400325101
4Jordan SchroederPhantoms (PHI)C214711-110010222171319.05%223711.3203306000000154.22%533511000.9300000112
5Evgeny SvechnikovPhantoms (PHI)LW/RW215510-18017145517209.09%824911.8620246000020017.86%28216000.8000000100
6Matt TennysonFlyersD12369-44014182810710.71%1229924.93325634000120100.00%0130000.6000000110
7Cam DarcyPhantoms (PHI)C2154941610131437142213.51%522810.8800001000022057.69%13087000.7900011200
8Nicolas DeslauriersPhantoms (PHI)LW5538114106642143611.90%112625.22325717000050076.47%17107001.2700011001
9Darren RaddyshPhantoms (PHI)D21246-332301213345115.88%2634616.50213424000427000.00%0320000.3500321100
10Dominik MasinPhantoms (PHI)D21145-12410101120775.00%1436217.28000025000024000.00%0222000.2801110001
11Brandon MashinterFlyersC322412041165912.50%15919.7421359000000125.71%3513001.3500000100
12Adam BrooksPhantoms (PHI)C21314-210107464850.00%31356.4400000000061143.66%7112000.5900011021
13Brenden KichtonPhantoms (PHI)D21011160314210.00%21346.380000400003000.00%0015000.1500000000
14Josh BrownPhantoms (PHI)D21000-61351474130.00%1623911.410000500000000.00%0015000.0000010000
15Julius BergmanPhantoms (PHI)D2100011210872100.00%51175.570000000000000.00%004000.0000011000
16Jake BischoffPhantoms (PHI)D21000-71010551020.00%1523211.0900001000016000.00%009000.0000101000
Team Total or Average2905077127-272631451551525231732739.56%143378313.052125466120900071557451.16%860104178000.67018101111910
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Linus UllmarkPhantoms (PHI)155910.8604.308240059421197200.00001521011
2Michael HouserPhantoms (PHI)64020.9182.47364001518387100.000060011
Team Total or Average219930.8773.7411880074604284300.00002121022


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam BrooksPhantoms (PHI)C221996-05-06Yes174 Lbs5 ft10NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Anders BjorkPhantoms (PHI)LW/RW221996-08-05Yes186 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Brenden KichtonPhantoms (PHI)D261992-06-17No185 Lbs5 ft10NoNoNo2RFAPro & Farm700,000$700,000$Link
Cam DarcyPhantoms (PHI)C241994-03-02No186 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$Link
Daniel AltshullerPhantoms (PHI)C/LW/RW241994-07-24No205 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$Link
Daniel SprongPhantoms (PHI)RW211997-03-17No180 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$Link
Dante SalituroPhantoms (PHI)C221996-11-15Yes176 Lbs5 ft8NoNoNo1RFAPro & Farm725,000$Link
Darren RaddyshPhantoms (PHI)D221996-02-28Yes182 Lbs6 ft0NoNoNo2RFAPro & Farm730,000$730,000$Link
Dominik MasinPhantoms (PHI)D221996-01-31Yes198 Lbs6 ft2NoNoNo2RFAPro & Farm850,000$850,000$Link
Evgeny SvechnikovPhantoms (PHI)LW/RW221996-10-30Yes199 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$900,000$Link
Jake BischoffPhantoms (PHI)D241994-07-25Yes194 Lbs6 ft1NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Jonathan RacinePhantoms (PHI)D251993-05-28No194 Lbs6 ft2NoNoNo2RFAPro & Farm660,000$660,000$Link
Jordan SchroederPhantoms (PHI)C271991-09-29No184 Lbs5 ft9NoNoNo1RFAPro & Farm725,000$Link
Josh BrownPhantoms (PHI)D241994-01-21No213 Lbs6 ft5NoNoNo1RFAPro & Farm500,000$Link
Julius BergmanPhantoms (PHI)D231995-11-02No205 Lbs6 ft1NoNoNo1RFAPro & Farm800,000$Link
Ken ApplebyPhantoms (PHI)LW231995-04-10No207 Lbs6 ft4NoNoNo4RFAPro & Farm850,000$850,000$850,000$850,000$Link
Linus ArnessonPhantoms (PHI)D241994-09-21Yes188 Lbs6 ft1NoNoNo1RFAPro & Farm817,500$Link
Linus UllmarkPhantoms (PHI)LW/RW251993-07-31No221 Lbs6 ft4NoNoNo1RFAPro & Farm500,000$Link
Luc SnuggerudPhantoms (PHI)D231995-09-18Yes184 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$500,000$Link
Michael HouserPhantoms (PHI)C261992-09-12No185 Lbs6 ft1NoNoNo1RFAPro & Farm585,000$Link
Nelson NogierPhantoms (PHI)D221996-05-26Yes191 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Nicolas DeslauriersPhantoms (PHI)LW271991-02-22No216 Lbs6 ft1NoNoNo3RFAPro & Farm775,000$775,000$775,000$Link
Raman HrabarenkaPhantoms (PHI)D261992-08-23No212 Lbs6 ft3NoNoNo1RFAPro & Farm725,000$Link
Reece ScarlettPhantoms (PHI)D251993-03-30No175 Lbs6 ft1NoNoNo2RFAPro & Farm675,000$675,000$Link
Shane PrincePhantoms (PHI)LW261992-11-15No185 Lbs5 ft11NoNoNo2RFAPro & Farm950,000$950,000$Link
Vince DunnPhantoms (PHI)D221996-10-28No187 Lbs6 ft0NoNoNo2RFAPro & Farm800,000$800,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.81193 Lbs6 ft11.81696,827$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Anders BjorkJordan SchroederEvgeny Svechnikov30122
3Shane PrinceCam Darcy20122
4Adam BrooksAnders Bjork10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Darren RaddyshDominik Masin30122
3Josh BrownJake Bischoff20122
4Brenden KichtonJulius Bergman10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Anders BjorkJordan SchroederEvgeny Svechnikov40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Darren RaddyshDominik Masin40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Anders BjorkEvgeny Svechnikov40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Darren RaddyshDominik Masin40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Darren RaddyshDominik Masin40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Anders BjorkEvgeny Svechnikov40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Darren RaddyshDominik Masin40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Shane Prince, Cam Darcy, Adam BrooksShane Prince, Cam DarcyAdam Brooks
Extra Defensemen
Normal PowerPlayPenalty Kill
Josh Brown, Jake Bischoff, Brenden KichtonJosh BrownJake Bischoff, Brenden Kichton
Penalty Shots
, , Anders Bjork, Evgeny Svechnikov,
Goalie
#1 : , #2 : Linus Ullmark


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Since Last GM Reset2189013007377-4104501000413651144003003241-9210.500731312040011233816702072302276646220317301783342.31%622166.13%119039348.35%23844153.97%17735050.57%479323499155287143
Total2189013007377-4104501000413651144003003241-9210.500731312040011233816702072302276646220317301783342.31%622166.13%119039348.35%23844153.97%17735050.57%479323499155287143
Vs Conference1969013006773-610450100041365924003002637-11170.447671201870011233815972072302276587199288278723041.67%552063.64%119039348.35%23844153.97%17735050.57%479323499155287143
Vs Division1454011005243994401000392811510001001315-2130.46452941460011233814502072302276413135213199552545.45%451077.78%119039348.35%23844153.97%17735050.57%479323499155287143

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2121L37313120467064622031730100
All Games
GPWLOTWOTL SOWSOLGFGA
218913007377
Home Games
GPWLOTWOTL SOWSOLGFGA
104510004136
Visitor Games
GPWLOTWOTL SOWSOLGFGA
114403003241
Last 10 Games
WLOTWOTL SOWSOL
360100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
783342.31%622166.13%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
20723022761123381
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
19039348.35%23844153.97%17735050.57%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
479323499155287143


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0315Phantoms3Rampage2WBoxScore
3 - 2018-10-0416Phantoms3Sound Tigers2WBoxScore
5 - 2018-10-0630Sound Tigers1Phantoms6WBoxScore
8 - 2018-10-0952Penguins2Phantoms5WBoxScore
10 - 2018-10-1169Phantoms4Checkers5LXBoxScore
11 - 2018-10-1275Phantoms2Sound Tigers3LXBoxScore
13 - 2018-10-1490Devils4Phantoms3LBoxScore
16 - 2018-10-17114Wolf Pack4Phantoms3LBoxScore
17 - 2018-10-18121Phantoms5Marlies4WBoxScore
19 - 2018-10-20135Phantoms3IceCaps6LBoxScore
21 - 2018-10-22152Devils1Phantoms6WBoxScore
24 - 2018-10-25171Phantoms4Pirates5LXBoxScore
25 - 2018-10-26179Sound Tigers6Phantoms3LBoxScore
29 - 2018-10-30205Penguins3Phantoms4WXBoxScore
31 - 2018-11-01227Phantoms3Monsters2WBoxScore
33 - 2018-11-03236Senators8Phantoms2LBoxScore
35 - 2018-11-05252Phantoms2Moose4LBoxScore
37 - 2018-11-07263Penguins1Phantoms5WBoxScore
40 - 2018-11-10282Phantoms2Bruins5LBoxScore
42 - 2018-11-12297Wolf Pack6Phantoms4LBoxScore
44 - 2018-11-14314Phantoms1Checkers3LBoxScore
46 - 2018-11-16328Bruins-Phantoms-
48 - 2018-11-18343Phantoms-Devils-
49 - 2018-11-19358Phantoms- Admirals-
51 - 2018-11-21368Stars-Phantoms-
54 - 2018-11-24391Heat-Phantoms-
57 - 2018-11-27410Phantoms-Griffins-
59 - 2018-11-29424Bears-Phantoms-
62 - 2018-12-02444Griffins-Phantoms-
64 - 2018-12-04464Phantoms-Devils-
66 - 2018-12-06478Falcons-Phantoms-
68 - 2018-12-08487Phantoms-Monsters-
70 - 2018-12-10502Phantoms-Sound Tigers-
72 - 2018-12-12513Crunch-Phantoms-
74 - 2018-12-14530Phantoms-Checkers-
77 - 2018-12-17546Americans-Phantoms-
80 - 2018-12-20568Phantoms-IceCaps-
82 - 2018-12-22580IceCaps-Phantoms-
84 - 2018-12-24595Phantoms-Pirates-
86 - 2018-12-26610Sound Tigers-Phantoms-
88 - 2018-12-28629Phantoms-Senators-
89 - 2018-12-29637Devils-Phantoms-
92 - 2019-01-01657Phantoms-Sound Tigers-
93 - 2019-01-02670Reign-Phantoms-
95 - 2019-01-04684Phantoms-Bears-
97 - 2019-01-06699Wolf Pack-Phantoms-
99 - 2019-01-08708Phantoms-Wolves-
101 - 2019-01-10727Phantoms-Rampage-
102 - 2019-01-11736Marlies-Phantoms-
105 - 2019-01-14760Phantoms-Ice Hogs-
106 - 2019-01-15769Comets-Phantoms-
110 - 2019-01-19795Comets-Phantoms-
113 - 2019-01-22814Phantoms-Bears-
114 - 2019-01-23826Phantoms-Wild-
115 - 2019-01-24831Senators-Phantoms-
119 - 2019-01-28857Bears-Phantoms-
121 - 2019-01-30875Phantoms-Penguins-
123 - 2019-02-01884Bruins-Phantoms-
126 - 2019-02-04905Phantoms-Penguins-
128 - 2019-02-06916Barracuda-Phantoms-
130 - 2019-02-08927Phantoms-Marlies-
132 - 2019-02-10946Gulls-Phantoms-
136 - 2019-02-14974Bruins-Phantoms-
139 - 2019-02-17997Condors-Phantoms-
142 - 2019-02-201020Phantoms-Americans-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221028Pirates-Phantoms-
147 - 2019-02-251049Phantoms-Wolf Pack-
149 - 2019-02-271062Checkers-Phantoms-
151 - 2019-03-011082Phantoms-Wolves-
153 - 2019-03-031092Moose-Phantoms-
157 - 2019-03-071115Phantoms-Americans-
158 - 2019-03-081122Checkers-Phantoms-
160 - 2019-03-101134Phantoms-Crunch-
162 - 2019-03-121151Moose-Phantoms-
165 - 2019-03-151167Phantoms-Crunch-
166 - 2019-03-161171Phantoms-Wolf Pack-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
28 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,811,750$ 1,669,050$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
498,357$ 0$ 498,357$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 10,784$ 1,326,432$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182189013007377-4104501000413651144003003241-921731312040011233816702072302276646220317301783342.31%622166.13%119039348.35%23844153.97%17735050.57%479323499155287143
Total Regular Season2189013007377-4104501000413651144003003241-921731312040011233816702072302276646220317301783342.31%622166.13%119039348.35%23844153.97%17735050.57%479323499155287143