Wolves

GP: 4 | W: 2 | L: 1 | OTL: 1 | P: 5
GF: 13 | GA: 10 | PP%: 27.27% | PK%: 70.00%
GM : Shane Powell | Morale : 53 | Team Overall : 61
Next Games vs Monsters
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jamie McGinnXX100.008168877878669170336670642575777153680
2Beau BennettXX100.007773857273788169507258715562646853670
3Zemgus GirgensonsXXX96.008445888371669061386059755967676751660
4Tom KuhnhacklXX97.008545967773568057305956872561636653650
5Chris StewartXX97.007378857385578458346071588276786753650
6Teemu PulkkinenX100.007166826966798366506364666155556753640
7Marcus FolignoX97.008980747383579661406559602569696454640
8Tomas NosekX100.007144926979588161546159722554546553630
9Andy AndreoffXX100.008299707379556057436158592560616154600
10Ryan Hitchcock (R)XX97.007463996563545264806461645844446453600
11Lane Pederson (R)X100.007670906670737856705058635544446156590
12Sam VigneaultX100.007878796578656856705156645344446053590
13Evan Polei (R)XX100.008582916782727849614745664344445653580
14Trevor van RiemsdykX100.006141918070728659255348712564656153660
15Martin MarincinX98.008077886677575953254641693961615553610
16Kevin Spinozzi (R)X98.007975896575646658254754655144446153600
17Stefan Leblanc (R)X100.007468896368738050254341613944445553590
Scratches
1Jussi JokinenX94.006341937070618266656558707284876453660
2Joe ColborneXX100.008684906684383553664754675144445848560
3Dawson Leedahl (R)X100.007372766672667149504746604444445448550
4Tyler Wong (R)X100.006861846261707649504548574644445548540
5Eric GrybaX95.009278606686656157255047682565665953640
6Slater KoekkoekX94.007543857169577258255051672554556053620
7Kris BindulisX100.007973936573505244253439623744445148550
TEAM AVERAGE98.46776786707463735844545466445657615262
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Keith Kinkaid100.00746362767474647383756557577253690
2Peter Budaj100.00516581734651505648483068695253560
3Adam Carlson (R)100.00524961705352525753533044445353540
Scratches
1Chris Nell (R)100.00505873694851505649493044445148530
2Ivan Kulbakov (R)100.00476075674247505445463044444948510
TEAM AVERAGE100.0055597071535553595654375152555157
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jussi JokinenWolves (VEG)RW4358-32055125625.00%19824.67033117000090053.57%2804001.6211000101
2Zemgus GirgensonsWolves (VEG)C/LW/RW3336-700611130723.08%27625.38123316000170031.34%6741001.5800000000
3Tom KuhnhacklWolves (VEG)LW/RW4426-30045102940.00%27919.80112217000030136.36%1110001.5111000100
4Kevin SpinozziWolves (VEG)D414532091134233.33%39223.1610111500008000.00%033001.0800000000
5Slater KoekkoekWolves (VEG)D4145-4006922650.00%511027.73101119000010000.00%001000.9000000000
6Marcus FolignoWolves (VEG)LW412335510474314.29%17919.8011231200000000.00%340000.7601001000
7Ryan HitchcockWolves (VEG)C/LW41230007675214.29%17619.22011015000000063.83%4710000.7800000000
8Andy AndreoffWolves (VEG)C/LW41122757141225.00%0379.3200021000000042.11%1913001.0700001001
9Eric GrybaWolves (VEG)D4112-31359882012.50%311127.7710111900016000.00%003000.3600100000
10Chris StewartWolves (VEG)LW/RW41120008883612.50%18020.12000015000021050.00%241000.5001000000
11Martin MarincinWolves (VEG)D40113201086110.00%59022.7300001400025000.00%016000.2200000010
12Teemu PulkkinenWolves (VEG)LW4011-2201275200.00%24110.360000000000000.00%030000.4811000000
13Lane PedersonWolves (VEG)C4101-15556100100.00%04010.0200000000000041.67%1202000.5000100000
14Evan PoleiWolves (VEG)C/LW4011200601030.00%2338.29000000001400100.00%200000.6000000000
15Tomas NosekWolves (VEG)LW41012006332133.33%24411.0300002000040066.67%600000.4500000000
16Sam VigneaultWolves (VEG)C4011220442000.00%0266.6300001000010066.67%300000.7500000000
17Drew StaffordGolden KnightsRW1000-100114140.00%12525.4500001000000050.00%600000.0001000000
18Stefan LeblancWolves (VEG)D4000-100533020.00%26416.130000000002000.00%002000.0000000000
Team Total or Average68192948-8402012010099345419.19%33120817.776814141730005691146.12%2062226000.7936202212
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Peter BudajWolves (VEG)42000.7734.4820100156632000.667640000
2Adam CarlsonWolves (VEG)20110.8804.00450032514000.000004000
Team Total or Average62110.8024.3924600189146000.667644000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam CarlsonWolves (VEG)C241994-02-13Yes175 Lbs6 ft3NoNoNo4RFAPro & Farm750,000$750,000$750,000$750,000$Link
Andy AndreoffWolves (VEG)C/LW271991-05-16No210 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Beau BennettWolves (VEG)LW/RW251992-11-27No195 Lbs6 ft2NoNoNo1RFAPro & Farm850,000$Link
Chris NellWolves (VEG)C/LW241994-09-02Yes178 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Chris StewartWolves (VEG)LW/RW301988-07-15 7:46:14 PMNo239 Lbs6 ft2NoNoNo2UFAPro & Farm1,700,000$1,700,000$Link
Dawson LeedahlWolves (VEG)LW221996-03-16Yes200 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Eric GrybaWolves (VEG)D291989-04-14No225 Lbs6 ft4NoNoNo3UFAPro & Farm950,000$950,000$950,000$Link
Evan PoleiWolves (VEG)C/LW221996-02-19Yes227 Lbs6 ft2NoNoNo4RFAPro & Farm750,000$750,000$750,000$750,000$Link
Ivan KulbakovWolves (VEG)C/LW221996-09-18Yes183 Lbs6 ft0NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Jamie McGinnWolves (VEG)LW/RW291989-07-15 1:46:14 AMNo205 Lbs6 ft1NoNoNo2UFAPro & Farm3,300,000$3,300,000$Link
Joe ColborneWolves (VEG)C/LW271991-01-30No221 Lbs6 ft5NoNoNo3RFAPro & Farm2,500,000$2,500,000$2,500,000$Link
Jussi JokinenWolves (VEG)RW341984-07-15 7:46:14 PMNo198 Lbs5 ft11NoNoNo1UFAPro & Farm1,000,000$Link
Keith KinkaidWolves (VEG)LW281990-07-04No195 Lbs6 ft3NoNoNo3RFAPro & Farm1,500,000$1,500,000$1,500,000$Link
Kevin SpinozziWolves (VEG)D221996-05-23Yes188 Lbs6 ft2NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Kris BindulisWolves (VEG)D231995-09-17No190 Lbs6 ft3NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Lane PedersonWolves (VEG)C211997-08-04Yes192 Lbs6 ft1NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Marcus FolignoWolves (VEG)LW261992-08-10No228 Lbs6 ft3NoNoNo3RFAPro & Farm2,875,000$2,875,000$2,875,000$Link
Martin MarincinWolves (VEG)D261992-02-18No210 Lbs6 ft4NoNoNo1RFAPro & Farm1,300,000$Link
Peter BudajWolves (VEG)C351983-07-15 1:46:14 PMNo196 Lbs6 ft1NoNoNo2UFAPro & Farm1,025,000$1,025,000$Link
Ryan HitchcockWolves (VEG)C/LW221996-03-30Yes176 Lbs5 ft10NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Sam VigneaultWolves (VEG)C231995-09-07No203 Lbs6 ft5NoNoNo4RFAPro & Farm925,000$925,000$925,000$925,000$Link
Slater KoekkoekWolves (VEG)D241994-02-17No198 Lbs6 ft2NoNoNo2RFAPro & Farm800,000$800,000$Link
Stefan LeblancWolves (VEG)D221996-03-16Yes185 Lbs6 ft0NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Teemu PulkkinenWolves (VEG)LW261992-01-02No185 Lbs5 ft10NoNoNo2RFAPro & Farm650,000$650,000$Link
Tom KuhnhacklWolves (VEG)LW/RW261992-01-20No196 Lbs6 ft2NoNoNo2RFAPro & Farm660,000$660,000$Link
Tomas NosekWolves (VEG)LW261992-08-31No210 Lbs6 ft3NoNoNo1RFAPro & Farm612,500$Link
Trevor van RiemsdykWolves (VEG)D271991-07-23No188 Lbs6 ft2NoNoNo2RFAPro & Farm900,000$900,000$Link
Tyler WongWolves (VEG)LW221996-02-28Yes172 Lbs5 ft9NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Zemgus GirgensonsWolves (VEG)C/LW/RW241994-01-05No200 Lbs6 ft2NoNoNo2RFAPro & Farm1,400,000$1,400,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2925.45199 Lbs6 ft22.721,089,569$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tom KuhnhacklZemgus Girgensons40122
2Chris StewartRyan HitchcockMarcus Foligno30122
3Marcus FolignoAndy Andreoff20122
4Teemu PulkkinenLane PedersonZemgus Girgensons10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Martin MarincinKevin Spinozzi30122
3Stefan Leblanc20122
4Martin Marincin10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tom KuhnhacklZemgus Girgensons60122
2Chris StewartRyan HitchcockMarcus Foligno40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Martin MarincinKevin Spinozzi40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Zemgus Girgensons60122
2Tom KuhnhacklChris Stewart40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Martin MarincinKevin Spinozzi40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
2Zemgus Girgensons40122Martin MarincinKevin Spinozzi40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Zemgus Girgensons60122
2Tom KuhnhacklChris Stewart40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Martin MarincinKevin Spinozzi40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tom KuhnhacklZemgus Girgensons
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tom KuhnhacklZemgus Girgensons
Extra Forwards
Normal PowerPlayPenalty Kill
Tomas Nosek, Sam Vigneault, Evan PoleiTomas Nosek, Sam VigneaultEvan Polei
Extra Defensemen
Normal PowerPlayPenalty Kill
Stefan Leblanc, Kevin Spinozzi, Stefan LeblancKevin Spinozzi,
Penalty Shots
, Zemgus Girgensons, Tom Kuhnhackl, Chris Stewart, Marcus Foligno
Goalie
#1 : Peter Budaj, #2 : Adam Carlson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Griffins20100100811-31000010045-11010000046-210.25081220005104343273729124918175713538.46%6350.00%0408348.19%285749.12%276640.91%773281428745
2Ice Hogs11000000954110000009540000000000021.0009152400510432627372912311116147114.29%30100.00%0408348.19%285749.12%276640.91%773281428745
3Monsters10000010321000000000001000001032121.00032500510433027372912114749200.00%10100.00%0408348.19%285749.12%276640.91%773281428745
Since Last GM Reset411001102018221000100131032010001078-150.6252029490051043992737291291334012022627.27%10370.00%0408348.19%285749.12%276640.91%773281428745
Total411001102018221000100131032010001078-150.6252029490051043992737291291334012022627.27%10370.00%0408348.19%285749.12%276640.91%773281428745
Vs Conference411001102018221000100131032010001078-150.6252029490051043992737291291334012022627.27%10370.00%0408348.19%285749.12%276640.91%773281428745
Vs Division11100110954110001009540010001000052.5009152400510432627372912311116147114.29%30100.00%0408348.19%285749.12%276640.91%773281428745

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
45OTL12029499991334012000
All Games
GPWLOTWOTL SOWSOLGFGA
41101102018
Home Games
GPWLOTWOTL SOWSOLGFGA
21001001310
Visitor Games
GPWLOTWOTL SOWSOLGFGA
201001078
Last 10 Games
WLOTWOTL SOWSOL
210100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
22627.27%10370.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
2737291251043
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
408348.19%285749.12%276640.91%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
773281428745


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-09-177Wolves3Monsters2WXXBoxScore
2 - 2018-09-1819Ice Hogs5Wolves9WBoxScore
4 - 2018-09-2043Wolves4Griffins6LBoxScore
5 - 2018-09-2154Griffins5Wolves4LXBoxScore
7 - 2018-09-2376 Admirals-Wolves-
8 - 2018-09-2490Wolves-Ice Hogs-
10 - 2018-09-2697Wolves-Wolves-
12 - 2018-09-28117Wolves-Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
16 - 2018-10-02141Monsters-Wolves-
17 - 2018-10-03148Wolves- Admirals-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
3 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
3,159,750$ 2,135,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 12 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT