Wolves

GP: 22 | W: 10 | L: 11 | OTL: 1 | P: 21
GF: 26 | GA: 35 | PP%: 20.63% | PK%: 64.18%
GM : Shane Powell | Morale : 50 | Team Overall : 59
Next Games vs Wolves
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jussi JokinenX96.006341937070618266656558707284876450650
2Zemgus GirgensonsXXX95.008445888371669061386059755967676750650
3Tom KuhnhacklXX98.008545967773568057305956872561636650640
4Chris StewartXX98.007378857385578458346071588276786750640
5Teemu PulkkinenX100.007166826966798366506364666155556750630
6Marcus FolignoX95.008980747383579661406559602569696450630
7Tomas NosekX100.007144926979588161546159722554546550620
8Andy AndreoffXX100.008299707379556057436158592560616150590
9Ryan Hitchcock (R)XX98.007463996563545264806461645844446450590
10Lane Pederson (R)X100.007670906670737856705058635544446150580
11Evan Polei (R)XX100.008582916782727849614745664344445650570
12Sam VigneaultX100.007878796578656856705156645344446050570
13Eric GrybaX97.009278606686656157255047682565665950630
14Slater KoekkoekX99.007543857169577258255051672554556050610
15Martin MarincinX97.008077886677575953254641693961615550600
16Kevin Spinozzi (R)X100.007975896575646658254754655144446150590
17Stefan Leblanc (R)X100.007468896368738050254341613944445550580
Scratches
1Joe ColborneXX100.008684906684383553664754675144445850550
2Dawson Leedahl (R)X100.007372766672667149504746604444445450540
3Tyler Wong (R)X100.006861846261707649504548574644445550530
4Kris BindulisX100.007973936573505244253439623744445150540
TEAM AVERAGE98.71786885697462725645535466455555605060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Peter Budaj95.00516581734651505648483068695250560
2Adam Carlson (R)100.00524961705352525753533044445350530
Scratches
1Chris Nell (R)100.00505873694851505649493044445150520
2Ivan Kulbakov (R)100.00476075674247505445463044444950500
TEAM AVERAGE98.7550587370475051564949305050515053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tom KuhnhacklWolves (VEG)LW/RW118715300141066244512.12%522020.013251328000021130.00%102114011.3601000210
2Andy AndreoffWolves (VEG)C/LW22347171551084312276.98%11788.1100000000001140.82%19693000.7800047221
3Teemu PulkkinenWolves (VEG)LW22426-340974610188.70%31536.9900000000000014.29%761000.7801000200
4Marcus FolignoWolves (VEG)LW11336-416101576332434.76%823221.17101916000000044.44%9212000.5200011002
5Zemgus GirgensonsWolves (VEG)C/LW/RW31452205392411.11%27224.2400014000020028.57%4952001.3700000000
6Jussi JokinenWolves (VEG)RW32240004694522.22%46923.2810116000020050.00%1433001.1500000100
7Kevin SpinozziWolves (VEG)D22123-93220111614547.14%2333715.340000400006000.00%0318000.1800004031
8Chris StewartWolves (VEG)LW/RW3213-2004460433.33%35719.180110200003100.00%212001.0400000000
9Eric GrybaWolves (VEG)D302211151096210.00%17926.480110400000000.00%003000.5000001000
10Lane PedersonWolves (VEG)C22022-310109129860.00%21536.9700000000000052.89%12132000.2600101001
11Martin MarincinWolves (VEG)D22011-123030201515820.00%1738517.510000400005000.00%0222000.0500312100
12Slater KoekkoekWolves (VEG)D2011000325110.00%55226.040000300003000.00%004000.3800000000
13Tomas NosekWolves (VEG)LW22011-100648670.00%1743.3701128000020042.31%2632000.2700000001
14Stefan LeblancWolves (VEG)D2200012020438340.00%526612.110000200003000.00%016000.0000112011
15Evan PoleiWolves (VEG)C/LW22000200100010.00%0241.1400002000020075.00%400000.0000000000
16Ryan HitchcockWolves (VEG)C/LW3000-300863240.00%15217.4800003000000052.38%2121000.0000000000
17Sam VigneaultWolves (VEG)C22000155111000.00%0221.020000000001000.00%000000.0000010000
Team Total or Average237243256-262011551341133111191767.72%81243310.27551026940000363243.14%4598085010.46025818877
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Peter BudajWolves (VEG)32100.9182.9818100911067000.000030001
2Adam CarlsonWolves (VEG)81610.8833.594850029248144000.667383020
Team Total or Average113710.8943.426660038358211000.6673113021


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam CarlsonWolves (VEG)C241994-02-13Yes175 Lbs6 ft3NoNoNo4RFAPro & Farm750,000$750,000$750,000$750,000$Link
Andy AndreoffWolves (VEG)C/LW271991-05-16No210 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Chris NellWolves (VEG)C/LW241994-09-02Yes178 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Chris StewartWolves (VEG)LW/RW301988-07-15 7:46:14 PMNo239 Lbs6 ft2NoNoNo2UFAPro & Farm1,700,000$1,700,000$Link
Dawson LeedahlWolves (VEG)LW221996-03-16Yes200 Lbs6 ft1NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Eric GrybaWolves (VEG)D291989-04-14No225 Lbs6 ft4NoNoNo3UFAPro & Farm950,000$950,000$950,000$Link
Evan PoleiWolves (VEG)C/LW221996-02-19Yes227 Lbs6 ft2NoNoNo4RFAPro & Farm750,000$750,000$750,000$750,000$Link
Ivan KulbakovWolves (VEG)C/LW221996-09-18Yes183 Lbs6 ft0NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Joe ColborneWolves (VEG)C/LW271991-01-30No221 Lbs6 ft5NoNoNo3RFAPro & Farm2,500,000$2,500,000$2,500,000$Link
Jussi JokinenWolves (VEG)RW341984-07-15 7:46:14 PMNo198 Lbs5 ft11NoNoNo1UFAPro & Farm1,000,000$Link
Kevin SpinozziWolves (VEG)D221996-05-23Yes188 Lbs6 ft2NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Kris BindulisWolves (VEG)D231995-09-17No190 Lbs6 ft3NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Lane PedersonWolves (VEG)C211997-08-04Yes192 Lbs6 ft1NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Marcus FolignoWolves (VEG)LW261992-08-10No228 Lbs6 ft3NoNoNo3RFAPro & Farm2,875,000$2,875,000$2,875,000$Link
Martin MarincinWolves (VEG)D261992-02-18No210 Lbs6 ft4NoNoNo1RFAPro & Farm1,300,000$Link
Peter BudajWolves (VEG)C351983-07-15 1:46:14 PMNo196 Lbs6 ft1NoNoNo2UFAPro & Farm1,025,000$1,025,000$Link
Ryan HitchcockWolves (VEG)C/LW221996-03-30Yes176 Lbs5 ft10NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Sam VigneaultWolves (VEG)C231995-09-07No203 Lbs6 ft5NoNoNo4RFAPro & Farm925,000$925,000$925,000$925,000$Link
Slater KoekkoekWolves (VEG)D241994-02-17No198 Lbs6 ft2NoNoNo2RFAPro & Farm800,000$800,000$Link
Stefan LeblancWolves (VEG)D221996-03-16Yes185 Lbs6 ft0NoNoNo4RFAPro & Farm700,000$700,000$700,000$700,000$Link
Teemu PulkkinenWolves (VEG)LW261992-01-02No185 Lbs5 ft10NoNoNo2RFAPro & Farm650,000$650,000$Link
Tom KuhnhacklWolves (VEG)LW/RW261992-01-20No196 Lbs6 ft2NoNoNo2RFAPro & Farm660,000$660,000$Link
Tomas NosekWolves (VEG)LW261992-08-31No210 Lbs6 ft3NoNoNo1RFAPro & Farm612,500$Link
Tyler WongWolves (VEG)LW221996-02-28Yes172 Lbs5 ft9NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Zemgus GirgensonsWolves (VEG)C/LW/RW241994-01-05No200 Lbs6 ft2NoNoNo2RFAPro & Farm1,400,000$1,400,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2525.16199 Lbs6 ft22.841,001,900$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tom KuhnhacklZemgus GirgensonsJussi Jokinen40122
2Chris StewartRyan HitchcockMarcus Foligno30122
3Marcus FolignoAndy AndreoffJussi Jokinen20122
4Teemu PulkkinenLane PedersonZemgus Girgensons10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Eric Gryba40122
2Martin MarincinKevin Spinozzi30122
3Stefan LeblancEric Gryba20122
4Martin Marincin10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tom KuhnhacklZemgus GirgensonsJussi Jokinen60122
2Chris StewartRyan HitchcockMarcus Foligno40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Eric Gryba60122
2Martin MarincinKevin Spinozzi40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Jussi JokinenZemgus Girgensons60122
2Tom KuhnhacklChris Stewart40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Eric Gryba60122
2Martin MarincinKevin Spinozzi40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Jussi Jokinen60122Eric Gryba60122
2Zemgus Girgensons40122Martin MarincinKevin Spinozzi40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Jussi JokinenZemgus Girgensons60122
2Tom KuhnhacklChris Stewart40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Eric Gryba60122
2Martin MarincinKevin Spinozzi40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tom KuhnhacklZemgus GirgensonsJussi JokinenEric Gryba
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tom KuhnhacklZemgus GirgensonsJussi JokinenEric Gryba
Extra Forwards
Normal PowerPlayPenalty Kill
Tomas Nosek, Sam Vigneault, Evan PoleiTomas Nosek, Sam VigneaultEvan Polei
Extra Defensemen
Normal PowerPlayPenalty Kill
Stefan Leblanc, Kevin Spinozzi, Eric GrybaStefan LeblancKevin Spinozzi, Eric Gryba
Penalty Shots
Jussi Jokinen, Zemgus Girgensons, Tom Kuhnhackl, Chris Stewart, Marcus Foligno
Goalie
#1 : Peter Budaj, #2 : Adam Carlson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals413000001219-731200000910-11010000039-620.2501224360013202619813319324071424469575120.00%11918.18%016438342.82%18140245.02%15034643.35%517349495167313155
2Barracuda11000000651000000000001100000065121.000610160013202613413319324073172695240.00%3233.33%016438342.82%18140245.02%15034643.35%517349495167313155
3Comets1010000012-11010000012-10000000000000.00012300132026122133193240731917104125.00%6266.67%016438342.82%18140245.02%15034643.35%517349495167313155
4Falcons10001000431100010004310000000000021.000481200132026124133193240731154302150.00%20100.00%016438342.82%18140245.02%15034643.35%517349495167313155
5Griffins321000008711010000014-32200000073440.667814220013202616013319324071032948515120.00%40100.00%016438342.82%18140245.02%15034643.35%517349495167313155
6Gulls11000000514000000000001100000051421.0005712001320261341331932407361323116233.33%4175.00%016438342.82%18140245.02%15034643.35%517349495167313155
7Heat3110000167-1000000000003110000167-130.5006121800132026178133193240789334032800.00%10280.00%116438342.82%18140245.02%15034643.35%517349495167313155
8Ice Hogs22000000624220000006240000000000041.000611170013202614213319324074515312811218.18%8187.50%016438342.82%18140245.02%15034643.35%517349495167313155
9Monsters2020000029-71010000014-31010000015-400.00024600132026146133193240740124217700.00%60100.00%016438342.82%18140245.02%15034643.35%517349495167313155
Since Last GM Reset22911010016070-101137010002635-91164000013435-1210.477601101700013202615701331932407682227364288631320.63%672464.18%116438342.82%18140245.02%15034643.35%517349495167313155
11Stars11000000312000000000001100000031221.00036900132026121133193240727811411100.00%4175.00%016438342.82%18140245.02%15034643.35%517349495167313155
Total22911010016070-101137010002635-91164000013435-1210.477601101700013202615701331932407682227364288631320.63%672464.18%116438342.82%18140245.02%15034643.35%517349495167313155
Vs Conference22911010016070-101137010002635-91164000013435-1210.477601101700013202615701331932407682227364288631320.63%672464.18%116438342.82%18140245.02%15034643.35%517349495167313155
Vs Division1059000002836-8736000001922-332300000914-5100.500285381001320261272133193240732110916412826623.08%321746.88%016438342.82%18140245.02%15034643.35%517349495167313155
15Wolves30300000714-720200000410-61010000034-100.0007121900132026111113319324071074253399222.22%9633.33%016438342.82%18140245.02%15034643.35%517349495167313155

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2221L16011017057068222736428800
All Games
GPWLOTWOTL SOWSOLGFGA
2291110016070
Home Games
GPWLOTWOTL SOWSOLGFGA
113710002635
Visitor Games
GPWLOTWOTL SOWSOLGFGA
116400013435
Last 10 Games
WLOTWOTL SOWSOL
820000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
631320.63%672464.18%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
13319324071320261
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
16438342.82%18140245.02%15034643.35%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
517349495167313155


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-037Wolves3Wolves2LBoxScore
5 - 2018-10-0629Wolves5Gulls1WBoxScore
7 - 2018-10-0847Wolves7Wolves2LBoxScore
9 - 2018-10-1060Wolves1Monsters5LBoxScore
11 - 2018-10-1274Monsters4Wolves1LBoxScore
13 - 2018-10-1485Wolves3Wolves4LBoxScore
15 - 2018-10-16100Wolves1Heat2LXXBoxScore
16 - 2018-10-17116Griffins4Wolves1LBoxScore
18 - 2018-10-19131Wolves2Heat3LBoxScore
20 - 2018-10-21145Ice Hogs1Wolves2WBoxScore
23 - 2018-10-24166 Admirals5Wolves3LBoxScore
25 - 2018-10-26176Wolves3 Admirals9LBoxScore
27 - 2018-10-28192Wolves6Barracuda5WBoxScore
29 - 2018-10-30207 Admirals1Wolves4WBoxScore
31 - 2018-11-01221Wolves3Griffins1WBoxScore
33 - 2018-11-03235Comets2Wolves1LBoxScore
36 - 2018-11-06253Wolves3Heat2WBoxScore
38 - 2018-11-08269Ice Hogs1Wolves4WBoxScore
40 - 2018-11-10287Wolves3Stars1WBoxScore
42 - 2018-11-12300Falcons3Wolves4WXBoxScore
44 - 2018-11-14318Wolves4Griffins2WBoxScore
45 - 2018-11-15326 Admirals4Wolves2LBoxScore
48 - 2018-11-18349Wolves-Rampage-
49 - 2018-11-19356Wolves-Americans-
51 - 2018-11-21369Ice Hogs-Wolves-
54 - 2018-11-24392Wolves-Condors-
55 - 2018-11-25399Bears-Wolves-
58 - 2018-11-28421Wolves- Admirals-
59 - 2018-11-29429Comets-Wolves-
62 - 2018-12-02450Wolves-Ice Hogs-
64 - 2018-12-04458Wolves-IceCaps-
65 - 2018-12-05467Condors-Wolves-
68 - 2018-12-08490Sound Tigers-Wolves-
70 - 2018-12-10499Wolves-Comets-
72 - 2018-12-12512Wolves-Gulls-
74 - 2018-12-14524Wolves-Wolves-
75 - 2018-12-15531Condors-Wolves-
78 - 2018-12-18553Wolves-Crunch-
79 - 2018-12-19560Devils-Wolves-
82 - 2018-12-22583Wolves-Wild-
83 - 2018-12-23588Heat-Wolves-
86 - 2018-12-26611Wolves-Barracuda-
87 - 2018-12-27620Bruins-Wolves-
90 - 2018-12-30640Wolves-Penguins-
91 - 2018-12-31649Rampage-Wolves-
94 - 2019-01-03675Wolves-Falcons-
95 - 2019-01-04682Moose-Wolves-
97 - 2019-01-06696Wolves-Stars-
99 - 2019-01-08712Reign-Wolves-
101 - 2019-01-10732Wolves-Gulls-
102 - 2019-01-11742Wild-Wolves-
104 - 2019-01-13755Wolves-Rampage-
107 - 2019-01-16775Gulls-Wolves-
109 - 2019-01-18789Wolves-Ice Hogs-
111 - 2019-01-20799Wolves-Reign-
112 - 2019-01-21807Monsters-Wolves-
115 - 2019-01-24829Wolves-Wolf Pack-
116 - 2019-01-25837Barracuda-Wolves-
119 - 2019-01-28858Wolves-Reign-
120 - 2019-01-29867Griffins-Wolves-
123 - 2019-02-01887Wolves-Pirates-
125 - 2019-02-03898Wolves-Marlies-
126 - 2019-02-04901Wild-Wolves-
129 - 2019-02-07923Wolves-Falcons-
130 - 2019-02-08930Checkers-Wolves-
133 - 2019-02-11952Wolves-Wolves-
135 - 2019-02-13961Wolves-Wolves-
138 - 2019-02-16991Griffins-Wolves-
140 - 2019-02-181003Wolves-Monsters-
143 - 2019-02-211023Stars-Wolves-
Trade Deadline --- Trades can’t be done after this day is simulated!
147 - 2019-02-251052Stars-Wolves-
151 - 2019-03-011082Phantoms-Wolves-
156 - 2019-03-061113Monsters-Wolves-
160 - 2019-03-101137Penguins-Wolves-
162 - 2019-03-121148Wolves-Senators-
166 - 2019-03-161174Wolves-Wolves-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,504,750$ 1,625,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
670,905$ 0$ 670,905$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 14,909$ 1,833,807$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201822911010016070-101137010002635-91164000013435-121601101700013202615701331932407682227364288631320.63%672464.18%116438342.82%18140245.02%15034643.35%517349495167313155
Total Regular Season22911010016070-101137010002635-91164000013435-121601101700013202615701331932407682227364288631320.63%672464.18%116438342.82%18140245.02%15034643.35%517349495167313155