Bruins

GP: 48 | W: 21 | L: 22 | OTL: 5 | P: 47
GF: 154 | GA: 160 | PP%: 18.12% | PK%: 74.65%
GM : Danick Payment | Morale : 50 | Team Overall : 59
Next Games #734 vs Checkers
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jake DebruskX100.007553917667688873387974537552527250660
2Sean KuralyXX100.008459847277628660776058792555556650640
3Austin CzarnikX100.006340998058588762567055602550506550610
4Luke Kunin (R)XX100.008378807771646861506060712547476650610
5Justin BaileyX100.008144947573598154265876632549497150610
6Kevin RoyX100.006341917161668365265475642546466950610
7Vinni Lettieri (R)XX100.007743997265627666386657612546466450600
8Matthew Highmore (R)XX100.006942997066628662315068712545456750600
9Nicolas Roy (R)X100.008078846878747859745954665144446250600
10Zack MacEwen (R)XX100.007777766677778259745856645344446250600
11Liam O'BrienX100.008279886879778356504662665945456450600
12Ian McCoshenX100.008460817781677157254349712547476050630
13Haydn FleuryX100.007844927277718456255147682552526050630
14Oscar Fantenberg (R)X100.008167877674646071256149612546466150620
15MacKenzie WeegarX100.008365846868657763255048642551516050610
16Rasmus AnderssonX100.005942877977687571254047622545455850610
17Kyle Wood (R)X100.008381896881687351254741653944445650600
Scratches
1Filip Chytil (R)X100.007065806565636363796260625745456350590
2Daniel O'ReganX100.005940967262566158666555632546466150580
3Jesse Gabrielle (R)X100.007973936873586149504746634444445550540
4Cameron Hughes (R)X100.007064846564515251645444594244445450530
5Vincent Dunn (R)XX100.006670555770555750635244574244445150510
6Reid Duke (R)X100.007670896570505244553844604244445150500
7Dysin MayoX100.007472806572535547253741603944445150540
TEAM AVERAGE100.00756087717163725946545564364747615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Kristers Gudlevskis98.00536683804957515854533044455550560
2Maxime Lagace100.00465453735042434850466545454850490
Scratches
TEAM AVERAGE99.0050606877505047535250484545525053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Austin CzarnikBruins (BOS)C481031411020154412751917.87%259012.3001103000001144.34%8303410001.3900000182
2Justin BaileyBruins (BOS)RW482118391014104227218731289.63%2159612.4310113000152332.00%505820001.3111020755
3Zack MacEwenBruins (BOS)C/RW4881321-26925292776223710.53%123988.3100000000001168.75%32821001.0503212113
4Vinni LettieriBruins (BOS)C/RW4841418-15516259241574.35%113858.0200000000000034.66%5772214000.9300010123
5Oscar FantenbergBruins (BOS)D4811415-16695540186528271.54%4066613.890002400016000.00%1341000.4500164012
6Liam O'BrienBruins (BOS)LW489312-1665032145193417.65%73757.8200000000003140.91%221113000.6435442301
7Kevin RoyBruins (BOS)LW1884126555760174613.33%319210.7100000000000128.57%28135001.2400001231
8Nicolas RoyBruins (BOS)C483710-42610898542633.53%23146.5600000000000064.81%54292000.6400110014
9Rasmus AnderssonBruins (BOS)D48077-1327151329407150.00%3867414.050000300004000.00%0438000.2102111013
10Kyle WoodBruins (BOS)D4804484030229113150.00%244579.530000000001000.00%0212000.1700213100
11MacKenzie WeegarBruins (BOS)D48033101610201325670.00%244729.840000000000000.00%0121000.1300002011
12Filip ChytilBruins (BOS)C43011255031010.00%0260.6100000000000080.00%510000.7600001001
Team Total or Average5416411918393442202422258512995217.52%18451509.521123150002187741.40%1599186197000.71411111716162326
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kristers GudlevskisBruins (BOS)48202250.8833.172783001471256760010.60015480441
2Maxime LagaceBruins (BOS)61000.9054.221282099562000.0000048000
Team Total or Average54212250.8853.222911201561351822010.600154848441


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Austin CzarnikBruins (BOS)C261992-12-12No160 Lbs5 ft9NoNoNo2RFAPro & Farm900,000$0$0$NoLink
Cameron HughesBruins (BOS)C221996-10-09Yes174 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Daniel O'ReganBruins (BOS)C241994-01-30No180 Lbs5 ft9NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Dysin MayoBruins (BOS)D221996-08-16No195 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Filip ChytilBruins (BOS)C191999-09-05Yes178 Lbs6 ft1NoNoNo3ELCPro & Farm900,000$0$0$NoLink
Haydn FleuryBruins (BOS)D221996-07-07No221 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$0$0$NoLink
Ian McCoshenBruins (BOS)D231995-08-04No217 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Jake DebruskBruins (BOS)LW221996-10-16No183 Lbs6 ft0NoNoNo2RFAPro & Farm950,000$0$0$NoLink
Jesse GabrielleBruins (BOS)LW211997-06-17Yes204 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Justin BaileyBruins (BOS)RW231995-07-01No214 Lbs6 ft3NoNoNo1RFAPro & Farm800,000$0$0$NoLink
Kevin RoyBruins (BOS)LW251993-05-19No174 Lbs5 ft9NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Kristers GudlevskisBruins (BOS)G261992-07-31No218 Lbs6 ft3NoNoNo4RFAPro & Farm650,000$0$0$NoLink
Kyle WoodBruins (BOS)D221996-05-03Yes235 Lbs6 ft7NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Liam O'BrienBruins (BOS)LW241994-07-29No215 Lbs6 ft1NoNoNo1RFAPro & Farm925,000$0$0$NoLink
Luke KuninBruins (BOS)C/RW211997-12-04Yes191 Lbs6 ft0NoNoNo3RFAPro & Farm950,000$0$0$NoLink
MacKenzie WeegarBruins (BOS)D251994-01-07No212 Lbs6 ft0NoNoNo1RFAPro & Farm850,000$0$0$NoLink
Matthew HighmoreBruins (BOS)LW/RW221996-02-27Yes181 Lbs5 ft11NoNoNo2RFAPro & Farm975,000$0$0$NoLink
Maxime LagaceBruins (BOS)G261993-01-11No190 Lbs6 ft2NoNoNo1RFAPro & Farm720,000$0$0$NoLink
Nicolas RoyBruins (BOS)C211997-02-05Yes208 Lbs6 ft4NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Oscar FantenbergBruins (BOS)D271991-10-07Yes203 Lbs6 ft0NoNoNo4RFAPro & Farm1,000,000$0$0$NoLink
Rasmus AnderssonBruins (BOS)D221996-10-26No214 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$0$0$NoLink
Reid DukeBruins (BOS)C221996-01-28Yes191 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Sean KuralyBruins (BOS)C/LW251993-01-20No205 Lbs6 ft2NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Vincent DunnBruins (BOS)C/LW231995-09-14Yes190 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Vinni LettieriBruins (BOS)C/RW231995-02-06Yes195 Lbs5 ft11NoNoNo2RFAPro & Farm925,000$0$0$NoLink
Zack MacEwenBruins (BOS)C/RW221996-07-08Yes212 Lbs6 ft3NoNoNo3RFAPro & Farm925,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2623.08198 Lbs6 ft12.35764,231$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Austin CzarnikJustin Bailey30122
3Liam O'BrienVinni LettieriZack MacEwen20122
4Nicolas Roy10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Oscar FantenbergRasmus Andersson30122
3MacKenzie WeegarKyle Wood20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Austin CzarnikJustin Bailey40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Oscar FantenbergRasmus Andersson40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Justin Bailey40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Oscar FantenbergRasmus Andersson40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Oscar FantenbergRasmus Andersson40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Justin Bailey40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Oscar FantenbergRasmus Andersson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, Vinni Lettieri, Zack MacEwen, Vinni LettieriZack MacEwen
Extra Defensemen
Normal PowerPlayPenalty Kill
MacKenzie Weegar, Kyle Wood, Oscar FantenbergMacKenzie WeegarKyle Wood, Oscar Fantenberg
Penalty Shots
, , , Justin Bailey, Austin Czarnik
Goalie
#1 : Kristers Gudlevskis, #2 : Maxime Lagace


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals1010000013-2000000000001010000013-200.00012300305466737367457552292376232150.00%3233.33%036879446.35%32477142.02%32679541.01%11698281102348643319
2Americans4120001012111100000103213120000099040.500122032003054667110367457552291484944436116.67%17570.59%036879446.35%32477142.02%32679541.01%11698281102348643319
3Bears311001001015-51000010034-121100000711-430.5001020300030546678836745755229892524451218.33%7357.14%036879446.35%32477142.02%32679541.01%11698281102348643319
4Checkers1010000023-11010000023-10000000000000.00024600305466737367457552292210414500.00%2150.00%036879446.35%32477142.02%32679541.01%11698281102348643319
5Comets11000000413110000004130000000000021.0004711003054667323674575522923119112150.00%20100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
6Condors1010000005-5000000000001010000005-500.000000003054667183674575522935104712200.00%10100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
7Crunch321000001183211000006601100000052340.66711203100305466769367457552295117203814321.43%5180.00%036879446.35%32477142.02%32679541.01%11698281102348643319
8Devils1010000034-1000000000001010000034-100.00036900305466735367457552292398125120.00%4250.00%036879446.35%32477142.02%32679541.01%11698281102348643319
9Falcons11000000541110000005410000000000021.000510150030546675236745755229341011195120.00%3166.67%036879446.35%32477142.02%32679541.01%11698281102348643319
10Griffins11000000514000000000001100000051421.0005914003054667193674575522923924124250.00%20100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
11IceCaps41000111171163100011014771000000134-160.7501728450030546671073674575522910830425912325.00%13284.62%136879446.35%32477142.02%32679541.01%11698281102348643319
12Marlies41201000181441010000035-231101000159640.5001834520030546671223674575522911029524814428.57%16475.00%036879446.35%32477142.02%32679541.01%11698281102348643319
13Monsters21100000440211000004400000000000020.50048120030546675036745755229381621263133.33%30100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
14Moose30300000311-81010000013-22020000028-600.0003581030546677636745755229100417528900.00%10370.00%036879446.35%32477142.02%32679541.01%11698281102348643319
15Penguins11000000523110000005230000000000021.000591400305466717367457552293064102150.00%20100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
16Phantoms21000001752110000005231000000123-130.750712190030546676736745755229581133306233.33%40100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
17Pirates2110000057-21010000016-51100000041320.5005914003054667643674575522966173925600.00%8362.50%036879446.35%32477142.02%32679541.01%11698281102348643319
18Rampage211000006601010000025-31100000041320.5006111700305466771367457552294363626400.00%30100.00%136879446.35%32477142.02%32679541.01%11698281102348643319
19Senators20100001812-41010000025-31000000167-110.250816240030546676136745755229902913244125.00%4175.00%136879446.35%32477142.02%32679541.01%11698281102348643319
20Sound Tigers20200000410-61010000026-41010000024-200.0004610003054667483674575522954274823300.00%14378.57%036879446.35%32477142.02%32679541.01%11698281102348643319
21Stars11000000532000000000001100000053221.0005101500305466729367457552292893174125.00%30100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
Total48172201233154160-623811002207176-525911010138384-1470.49015427943310305466713893674575522913524466336251382518.12%1423674.65%336879446.35%32477142.02%32679541.01%11698281102348643319
23Wild1010000013-21010000013-20000000000000.00012300305466725367457552291551124100.00%30100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
24Wolf Pack311000101293110000005232010001077040.667122032003054667943674575522983411950900.00%7357.14%036879446.35%32477142.02%32679541.01%11698281102348643319
25Wolves1010000036-31010000036-30000000000000.00035800305466738367457552292210811100.00%4250.00%036879446.35%32477142.02%32679541.01%11698281102348643319
26Wolves11000000321000000000001100000032121.00036900305466723367457552293612453133.33%20100.00%036879446.35%32477142.02%32679541.01%11698281102348643319
_Since Last GM Reset48172201233154160-623811002207176-525911010138384-1470.49015427943310305466713893674575522913524466336251382518.12%1423674.65%336879446.35%32477142.02%32679541.01%11698281102348643319
_Vs Conference35101601233117122-51657002205253-11959010136569-4330.4711172093261030546679953674575522910323414254491071715.89%1133172.57%236879446.35%32477142.02%32679541.01%11698281102348643319
_Vs Division203501122766412912001202931-2112301002473314150.3757613621200305466755236745755229596180234249601423.33%651675.38%236879446.35%32477142.02%32679541.01%11698281102348643319

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4847L41542794331389135244663362510
All Games
GPWLOTWOTL SOWSOLGFGA
4817221233154160
Home Games
GPWLOTWOTL SOWSOLGFGA
2381102207176
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2591110138384
Last 10 Games
WLOTWOTL SOWSOL
550000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1382518.12%1423674.65%3
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
367457552293054667
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
36879446.35%32477142.02%32679541.01%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11698281102348643319


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-024Bruins1Americans3LBoxScore
3 - 2018-10-0420Bruins3Marlies2WXBoxScore
5 - 2018-10-0627Senators5Bruins2LBoxScore
7 - 2018-10-0848IceCaps2Bruins9WBoxScore
10 - 2018-10-1163Bruins6Bears4WBoxScore
12 - 2018-10-1380Bruins3Wolf Pack2WXXBoxScore
13 - 2018-10-1488Marlies5Bruins3LBoxScore
16 - 2018-10-17112Sound Tigers6Bruins2LBoxScore
18 - 2018-10-19132Pirates6Bruins1LBoxScore
21 - 2018-10-22151Bruins1Bears7LBoxScore
23 - 2018-10-24160Bruins6Senators7LXXBoxScore
25 - 2018-10-26175Crunch3Bruins2LBoxScore
27 - 2018-10-28193Bruins3IceCaps4LXXBoxScore
29 - 2018-10-30203IceCaps2Bruins1LXBoxScore
32 - 2018-11-02228Americans2Bruins3WXXBoxScore
35 - 2018-11-05247Bruins4Wolf Pack5LBoxScore
37 - 2018-11-07259Monsters1Bruins2WBoxScore
40 - 2018-11-10282Phantoms2Bruins5WBoxScore
42 - 2018-11-12298Bruins1 Admirals3LBoxScore
44 - 2018-11-14313Wild3Bruins1LBoxScore
46 - 2018-11-16328Bruins2Phantoms3LXXBoxScore
48 - 2018-11-18344Bruins2Sound Tigers4LBoxScore
49 - 2018-11-19354Penguins2Bruins5WBoxScore
52 - 2018-11-22378Falcons4Bruins5WBoxScore
53 - 2018-11-23386Bruins5Americans2WBoxScore
56 - 2018-11-26406Wolf Pack2Bruins5WBoxScore
58 - 2018-11-28420Bruins9Marlies3WBoxScore
60 - 2018-11-30434Bruins3Americans4LBoxScore
62 - 2018-12-02448Bears4Bruins3LXBoxScore
64 - 2018-12-04461Bruins5Crunch2WBoxScore
65 - 2018-12-05472Bruins0Moose3LBoxScore
67 - 2018-12-07485Crunch3Bruins4WBoxScore
71 - 2018-12-11505Bruins2Moose5LBoxScore
73 - 2018-12-13515Monsters3Bruins2LBoxScore
75 - 2018-12-15535Bruins5Stars3WBoxScore
77 - 2018-12-17545Bruins0Condors5LBoxScore
78 - 2018-12-18552Moose3Bruins1LBoxScore
81 - 2018-12-21574Bruins4Pirates1WBoxScore
82 - 2018-12-22582Wolves6Bruins3LBoxScore
85 - 2018-12-25607IceCaps3Bruins4WXXBoxScore
87 - 2018-12-27620Bruins3Wolves2WBoxScore
89 - 2018-12-29636Comets1Bruins4WBoxScore
91 - 2018-12-31653Bruins5Griffins1WBoxScore
93 - 2019-01-02666Bruins4Rampage1WBoxScore
94 - 2019-01-03676Rampage5Bruins2LBoxScore
96 - 2019-01-05687Bruins3Devils4LBoxScore
98 - 2019-01-07706Checkers3Bruins2LBoxScore
99 - 2019-01-08713Bruins3Marlies4LBoxScore
102 - 2019-01-11734Checkers-Bruins-
105 - 2019-01-14759Bruins-Checkers-
106 - 2019-01-15768Gulls-Bruins-
109 - 2019-01-18791Sound Tigers-Bruins-
112 - 2019-01-21810Bruins-Senators-
114 - 2019-01-23823Americans-Bruins-
116 - 2019-01-25839Bruins-Comets-
119 - 2019-01-28853Sound Tigers-Bruins-
122 - 2019-01-31880Bruins-Reign-
123 - 2019-02-01884Bruins-Phantoms-
125 - 2019-02-03896Senators-Bruins-
128 - 2019-02-06917Marlies-Bruins-
130 - 2019-02-08926Bruins-IceCaps-
133 - 2019-02-11949Barracuda-Bruins-
135 - 2019-02-13963Bruins-Bears-
136 - 2019-02-14974Bruins-Phantoms-
138 - 2019-02-16986Gulls-Bruins-
141 - 2019-02-191011Marlies-Bruins-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231039Pirates-Bruins-
148 - 2019-02-261058Devils-Bruins-
152 - 2019-03-021088Devils-Bruins-
154 - 2019-03-041102Bruins-Crunch-
155 - 2019-03-051106Bruins-Ice Hogs-
157 - 2019-03-071118Bruins-Penguins-
159 - 2019-03-091127Pirates-Bruins-
161 - 2019-03-111141Bruins-Heat-
163 - 2019-03-131156Senators-Bruins-
165 - 2019-03-151166Bruins-Penguins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,170,873$ 1,987,000$ 1,542,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,170,873$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 11,827$ 816,063$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201848172201233154160-623811002207176-525911010138384-14715427943310305466713893674575522913524466336251382518.12%1423674.65%336879446.35%32477142.02%32679541.01%11698281102348643319
Total Regular Season48172201233154160-623811002207176-525911010138384-14715427943310305466713893674575522913524466336251382518.12%1423674.65%336879446.35%32477142.02%32679541.01%11698281102348643319