Bruins

GP: 20 | W: 7 | L: 10 | OTL: 3 | P: 17
GF: 31 | GA: 37 | PP%: 16.33% | PK%: 65.15%
GM : Danick Payment | Morale : 50 | Team Overall : 59
Next Games vs Americans
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Austin CzarnikX100.006340998058588762567055602550506550610
2Justin BaileyX100.008144947573598154265876632549497150610
3Vinni Lettieri (R)XX100.007743997265627666386657612546466450600
4Nicolas Roy (R)X100.008078846878747859745954665144446250600
5Zack MacEwen (R)XX100.007777766677778259745856645344446250600
6Liam O'BrienX100.008279886879778356504662665945456450600
7Filip Chytil (R)X100.007065806565636363796260625745456350590
8Oscar Fantenberg (R)X100.008167877674646071256149612546466150620
9MacKenzie WeegarX100.008365846868657763255048642551516050610
10Rasmus AnderssonX100.005942877977687571254047622545455850610
11Kyle Wood (R)X100.008381896881687351254741653944445650600
Scratches
1Jake DebruskX100.007553917667688873387974537552527250660
2Sean KuralyXX100.008459847277628660776058792555556650640
3Luke Kunin (R)XX100.008378807771646861506060712547476650610
4Kevin RoyX100.006341917161668365265475642546466950610
5Matthew Highmore (R)XX100.006942997066628662315068712545456750600
6Daniel O'ReganX100.005940967262566158666555632546466150580
7Jesse Gabrielle (R)X100.007973936873586149504746634444445550540
8Cameron Hughes (R)X100.007064846564515251645444594244445450530
9Vincent Dunn (R)XX100.006670555770555750635244574244445150510
10Reid Duke (R)X100.007670896570505244553844604244445150500
11Ian McCoshenX100.008460817781677157254349712547476050630
12Haydn FleuryX100.007844927277718456255147682552526050630
13Dysin MayoX100.007472806572535547253741603944445150540
TEAM AVERAGE100.00756087717163725946545564364747615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Kristers Gudlevskis100.00536683804957515854533044455550560
2Maxime Lagace100.00465453735042434850466545454850490
Scratches
TEAM AVERAGE100.0050606877505047535250484545525053
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Austin CzarnikBruins (BOS)C201121362010263916312.56%222611.3300000000000045.35%43084001.1500000011
2Kevin RoyBruins (BOS)LW1884126555760174613.33%319210.7100000000000128.57%28135001.2400001231
3Justin BaileyBruins (BOS)RW20641065521156923438.70%923111.5700000000030125.00%242111000.8611010201
4Zack MacEwenBruins (BOS)C/RW20156-5175157339143.03%51678.3700000000000066.67%924000.7203010001
5Rasmus AnderssonBruins (BOS)D20066-21353824360.00%1927713.900000000003000.00%0114000.4301100011
6Nicolas RoyBruins (BOS)C20235-4195143519285.71%11396.9600000000000068.18%22132000.7200010011
7Oscar FantenbergBruins (BOS)D20044-3211514102910150.00%1627413.740002200014000.00%0117000.2900012010
8Liam O'BrienBruins (BOS)LW20404-4951592201818.18%21638.1800000000002057.14%752000.4934100101
9Vinni LettieriBruins (BOS)C/RW20123-4558103316193.03%31608.0400000000000042.68%16487000.3700010001
10MacKenzie WeegarBruins (BOS)D20022-1205411220.00%71959.790000000000000.00%0113000.2000000000
11Filip ChytilBruins (BOS)C20000100020000.00%090.4800000000000075.00%400000.0000000001
12Kyle WoodBruins (BOS)D20000-21151443060.00%101929.630000000000000.00%026000.0000001000
Team Total or Average238234265-6109551111063581152286.42%7722329.38000240001122244.62%6887585000.5849254579
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Kristers GudlevskisBruins (BOS)2061030.8743.5411200066524311000.63611200120
2Maxime LagaceBruins (BOS)41000.9253.601002068058000.0000020000
Team Total or Average2471030.8813.5412202072604369000.636112020120


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Austin CzarnikBruins (BOS)C251992-12-12No160 Lbs5 ft9NoNoNo2RFAPro & Farm900,000$900,000$Link
Cameron HughesBruins (BOS)C221996-10-09Yes174 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Daniel O'ReganBruins (BOS)C241994-01-30No180 Lbs5 ft9NoNoNo2RFAPro & Farm500,000$500,000$Link
Dysin MayoBruins (BOS)D221996-08-16No195 Lbs6 ft2NoNoNo2RFAPro & Farm500,000$500,000$Link
Filip ChytilBruins (BOS)C191999-09-05Yes178 Lbs6 ft1NoNoNo3ELCPro & Farm900,000$900,000$900,000$Link
Haydn FleuryBruins (BOS)D221996-07-07No221 Lbs6 ft3NoNoNo2RFAPro & Farm950,000$950,000$Link
Ian McCoshenBruins (BOS)D231995-08-04No217 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$850,000$Link
Jake DebruskBruins (BOS)LW221996-10-16No183 Lbs6 ft0NoNoNo2RFAPro & Farm950,000$950,000$Link
Jesse GabrielleBruins (BOS)LW211997-06-17Yes204 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Justin BaileyBruins (BOS)RW231995-07-01No214 Lbs6 ft3NoNoNo1RFAPro & Farm800,000$Link
Kevin RoyBruins (BOS)LW251993-05-19No174 Lbs5 ft9NoNoNo2RFAPro & Farm650,000$650,000$Link
Kristers GudlevskisBruins (BOS)C261992-07-31No218 Lbs6 ft3NoNoNo4RFAPro & Farm650,000$650,000$650,000$650,000$Link
Kyle WoodBruins (BOS)D221996-05-03Yes235 Lbs6 ft7NoNoNo2RFAPro & Farm700,000$700,000$Link
Liam O'BrienBruins (BOS)LW241994-07-29No215 Lbs6 ft1NoNoNo1RFAPro & Farm925,000$Link
Luke KuninBruins (BOS)C/RW201997-12-04Yes191 Lbs6 ft0NoNoNo3ELCPro & Farm950,000$950,000$950,000$Link
MacKenzie WeegarBruins (BOS)D241994-01-07No212 Lbs6 ft0NoNoNo1RFAPro & Farm850,000$Link
Matthew HighmoreBruins (BOS)LW/RW221996-02-27Yes181 Lbs5 ft11NoNoNo2RFAPro & Farm975,000$975,000$Link
Maxime LagaceBruins (BOS)D251993-01-11No190 Lbs6 ft2NoNoNo1RFAPro & Farm720,000$Link
Nicolas RoyBruins (BOS)C211997-02-05Yes208 Lbs6 ft4NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Oscar FantenbergBruins (BOS)D271991-10-07Yes203 Lbs6 ft0NoNoNo4RFAPro & Farm1,000,000$1,000,000$1,000,000$1,000,000$Link
Rasmus AnderssonBruins (BOS)D221996-10-26No214 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$800,000$Link
Reid DukeBruins (BOS)C221996-01-28Yes191 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Sean KuralyBruins (BOS)C/LW251993-01-20No205 Lbs6 ft2NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Vincent DunnBruins (BOS)C/LW231995-09-14Yes190 Lbs6 ft0NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Vinni LettieriBruins (BOS)C/RW231995-02-06Yes195 Lbs5 ft11NoNoNo2RFAPro & Farm925,000$925,000$Link
Zack MacEwenBruins (BOS)C/RW221996-07-08Yes212 Lbs6 ft3NoNoNo3RFAPro & Farm925,000$925,000$925,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2622.92198 Lbs6 ft12.35764,231$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Austin CzarnikJustin Bailey30122
3Liam O'BrienVinni LettieriZack MacEwen20122
4Nicolas Roy10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Oscar FantenbergRasmus Andersson30122
3MacKenzie WeegarKyle Wood20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Austin CzarnikJustin Bailey40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Oscar FantenbergRasmus Andersson40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Justin Bailey40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Oscar FantenbergRasmus Andersson40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Oscar FantenbergRasmus Andersson40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Justin Bailey40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Oscar FantenbergRasmus Andersson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Filip Chytil, Vinni Lettieri, Zack MacEwenFilip Chytil, Vinni LettieriZack MacEwen
Extra Defensemen
Normal PowerPlayPenalty Kill
MacKenzie Weegar, Kyle Wood, Oscar FantenbergMacKenzie WeegarKyle Wood, Oscar Fantenberg
Penalty Shots
, , , Justin Bailey, Austin Czarnik
Goalie
#1 : Kristers Gudlevskis, #2 : Maxime Lagace


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals1010000013-2000000000001010000013-200.00012300161723537135186234202376232150.00%3233.33%017033950.15%14131844.34%14734242.98%465319473151282139
2Americans2010001045-1100000103211010000013-220.500459001617235521351862342076272625400.00%8450.00%017033950.15%14131844.34%14734242.98%465319473151282139
3Bears21100000711-40000000000021100000711-420.500714210016172355913518623420651822319111.11%6350.00%017033950.15%14131844.34%14734242.98%465319473151282139
4Crunch1010000023-11010000023-10000000000000.0002460016172352213518623420152211100.00%10100.00%017033950.15%14131844.34%14734242.98%465319473151282139
5IceCaps3100010113852100010010461000000134-140.6671322350016172358113518623420862629489222.22%9277.78%017033950.15%14131844.34%14734242.98%465319473151282139
6Marlies2010100067-11010000035-21000100032120.500610160016172355913518623420571423204125.00%9277.78%017033950.15%14131844.34%14734242.98%465319473151282139
7Monsters11000000211110000002110000000000021.00024600161723522135186234201911713200.00%10100.00%017033950.15%14131844.34%14734242.98%465319473151282139
8Phantoms11000000523110000005230000000000021.000581300161723534135186234202652193266.67%30100.00%017033950.15%14131844.34%14734242.98%465319473151282139
9Pirates1010000016-51010000016-50000000000000.00012300161723524135186234203893015400.00%5340.00%017033950.15%14131844.34%14734242.98%465319473151282139
10Senators20100001812-41010000025-31000000167-110.250816240016172356113518623420902913244125.00%4175.00%117033950.15%14131844.34%14734242.98%465319473151282139
Since Last GM Reset20410011225974-151136001103137-6914010122837-9170.425591051640016172355631351862342060420123328849816.33%662365.15%117033950.15%14131844.34%14734242.98%465319473151282139
12Sound Tigers1010000026-41010000026-40000000000000.00024600161723529135186234203118338100.00%9366.67%017033950.15%14131844.34%14734242.98%465319473151282139
Total20410011225974-151136001103137-6914010122837-9170.425591051640016172355631351862342060420123328849816.33%662365.15%117033950.15%14131844.34%14734242.98%465319473151282139
Vs Conference1738011225567-12925001102833-5813010122734-7150.44155971520016172354791351862342054717820922844715.91%592164.41%117033950.15%14131844.34%14734242.98%465319473151282139
Vs Division1113011123441-7712001102125-4401010021316-390.4093459930016172352991351862342036210712314326415.38%361266.67%117033950.15%14131844.34%14734242.98%465319473151282139
16Wild1010000013-21010000013-20000000000000.00012300161723525135186234201551124100.00%30100.00%017033950.15%14131844.34%14734242.98%465319473151282139
17Wolf Pack20100010770000000000002010001077020.50071219001617235581351862342063301037500.00%5340.00%017033950.15%14131844.34%14734242.98%465319473151282139

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2017L25910516456360420123328800
All Games
GPWLOTWOTL SOWSOLGFGA
2041011225974
Home Games
GPWLOTWOTL SOWSOLGFGA
113601103137
Visitor Games
GPWLOTWOTL SOWSOLGFGA
91410122837
Last 10 Games
WLOTWOTL SOWSOL
340102
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
49816.33%662365.15%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
135186234201617235
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
17033950.15%14131844.34%14734242.98%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
465319473151282139


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-024Bruins1Americans3LBoxScore
3 - 2018-10-0420Bruins3Marlies2WXBoxScore
5 - 2018-10-0627Senators5Bruins2LBoxScore
7 - 2018-10-0848IceCaps2Bruins9WBoxScore
10 - 2018-10-1163Bruins6Bears4WBoxScore
12 - 2018-10-1380Bruins3Wolf Pack2WXXBoxScore
13 - 2018-10-1488Marlies5Bruins3LBoxScore
16 - 2018-10-17112Sound Tigers6Bruins2LBoxScore
18 - 2018-10-19132Pirates6Bruins1LBoxScore
21 - 2018-10-22151Bruins1Bears7LBoxScore
23 - 2018-10-24160Bruins6Senators7LXXBoxScore
25 - 2018-10-26175Crunch3Bruins2LBoxScore
27 - 2018-10-28193Bruins3IceCaps4LXXBoxScore
29 - 2018-10-30203IceCaps2Bruins1LXBoxScore
32 - 2018-11-02228Americans2Bruins3WXXBoxScore
35 - 2018-11-05247Bruins4Wolf Pack5LBoxScore
37 - 2018-11-07259Monsters1Bruins2WBoxScore
40 - 2018-11-10282Phantoms2Bruins5WBoxScore
42 - 2018-11-12298Bruins1 Admirals3LBoxScore
44 - 2018-11-14313Wild3Bruins1LBoxScore
46 - 2018-11-16328Bruins-Phantoms-
48 - 2018-11-18344Bruins-Sound Tigers-
49 - 2018-11-19354Penguins-Bruins-
52 - 2018-11-22378Falcons-Bruins-
53 - 2018-11-23386Bruins-Americans-
56 - 2018-11-26406Wolf Pack-Bruins-
58 - 2018-11-28420Bruins-Marlies-
60 - 2018-11-30434Bruins-Americans-
62 - 2018-12-02448Bears-Bruins-
64 - 2018-12-04461Bruins-Crunch-
65 - 2018-12-05472Bruins-Moose-
67 - 2018-12-07485Crunch-Bruins-
71 - 2018-12-11505Bruins-Moose-
73 - 2018-12-13515Monsters-Bruins-
75 - 2018-12-15535Bruins-Stars-
77 - 2018-12-17545Bruins-Condors-
78 - 2018-12-18552Moose-Bruins-
81 - 2018-12-21574Bruins-Pirates-
82 - 2018-12-22582Wolves-Bruins-
85 - 2018-12-25607IceCaps-Bruins-
87 - 2018-12-27620Bruins-Wolves-
89 - 2018-12-29636Comets-Bruins-
91 - 2018-12-31653Bruins-Griffins-
93 - 2019-01-02666Bruins-Rampage-
94 - 2019-01-03676Rampage-Bruins-
96 - 2019-01-05687Bruins-Devils-
98 - 2019-01-07706Checkers-Bruins-
99 - 2019-01-08713Bruins-Marlies-
102 - 2019-01-11734Checkers-Bruins-
105 - 2019-01-14759Bruins-Checkers-
106 - 2019-01-15768Gulls-Bruins-
109 - 2019-01-18791Sound Tigers-Bruins-
112 - 2019-01-21810Bruins-Senators-
114 - 2019-01-23823Americans-Bruins-
116 - 2019-01-25839Bruins-Comets-
119 - 2019-01-28853Sound Tigers-Bruins-
122 - 2019-01-31880Bruins-Reign-
123 - 2019-02-01884Bruins-Phantoms-
125 - 2019-02-03896Senators-Bruins-
128 - 2019-02-06917Marlies-Bruins-
130 - 2019-02-08926Bruins-IceCaps-
133 - 2019-02-11949Barracuda-Bruins-
135 - 2019-02-13963Bruins-Bears-
136 - 2019-02-14974Bruins-Phantoms-
138 - 2019-02-16986Gulls-Bruins-
141 - 2019-02-191011Marlies-Bruins-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231039Pirates-Bruins-
148 - 2019-02-261058Devils-Bruins-
152 - 2019-03-021088Devils-Bruins-
154 - 2019-03-041102Bruins-Crunch-
155 - 2019-03-051106Bruins-Ice Hogs-
157 - 2019-03-071118Bruins-Penguins-
159 - 2019-03-091127Pirates-Bruins-
161 - 2019-03-111141Bruins-Heat-
163 - 2019-03-131156Senators-Bruins-
165 - 2019-03-151166Bruins-Penguins-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,987,000$ 1,542,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
532,215$ 0$ 532,215$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 11,827$ 1,454,721$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201820410011225974-151136001103137-6914010122837-917591051640016172355631351862342060420123328849816.33%662365.15%117033950.15%14131844.34%14734242.98%465319473151282139
Total Regular Season20410011225974-151136001103137-6914010122837-917591051640016172355631351862342060420123328849816.33%662365.15%117033950.15%14131844.34%14734242.98%465319473151282139