Senators

GP: 21 | W: 12 | L: 5 | OTL: 4 | P: 28
GF: 43 | GA: 53 | PP%: 40.00% | PK%: 69.57%
GM : Anthony Bottoni | Morale : 50 | Team Overall : 59
Next Games vs IceCaps
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Timo MeierXX100.007854827876699170496577612557577350660
2Tyler BertuzziX100.007655777166687669297768672549497150640
3Nikolay GoldobinXX100.006141948166628066446372532551516850620
4Jakub VranaXX99.006341947767636464496571522556566750610
5Nikita SoshnikovXX100.008144917866586556255758756355556450610
6Christian ThomasX100.007062906762717363505765626245456550600
7Janne Kuokkanen (R)XXX97.007269807069666762786457635444446350600
8Joseph BlandisiXX100.006566627366676962786257615453536150600
9Mark McNeillXX100.007878776678747858734962655944446350590
10Dmytro Timashov (R)X100.007267856767758059505657625444446250590
11Scott MayfieldX100.008157737483756560255648832554546350670
12Duncan SiemensX100.007987616579598461254648852545456150640
13Joseph MorrowX100.007944867774705862255451682558586250630
14Petter GranbergX100.007876827076748247253740633848485450600
15Cameron GaunceX100.007377656777748051254641613945455450590
16Roland McKeownX100.006197507475628854256547552544445750590
Scratches
1Hunter ShinkarukX100.007165857065737759505262625945456350590
2Jakob Forsbacka Karlsson (R)X100.007368866468646560755660635744446250580
3Paul Bittner (R)X100.008278916578585955504957665444446050570
4Cole CasselsX100.006765716565768253665547584544445650560
5Radel Fazleev (R)XX100.007366906366737951645146604444445650550
6Jimmy LodgeXX100.006963846663656951644751584844445650540
7Brian HartXX100.007675786375515249504647614544445450520
8Tyler BiggsX100.00597561545657595159504852545354150510
9Mirco MuellerX84.026542956877706460255247842555556250640
10Mitchell Vande Sompel (R)X100.007268826668737855255046614444445850590
11Frank CorradoX100.007570866970565753255040643853545550580
12Jeff SchultzX100.008988906588565946253740673844445350580
13Rinat ValievX100.008076886476606352254345644345455650580
14Jordan SchmaltzX100.006141867372566563254847562546465650570
15Timothy Liljegren (R)X100.007570857270575950254739613744445350570
16Matt FinnX100.00567162645861656625555357504646150560
17Stuart PercyX100.007469855869656953254943614144445550560
18Jordan SubbanX100.006762776862575950254639573744445250540
19Michael DowningX100.007777776677424146253740613844445050530
TEAM AVERAGE99.43726680697164695741535263414848565059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anthony Stolarz100.00606986886064516258573044446050610
Scratches
1Jake Paterson (R)100.00515670664951505649493044445150520
TEAM AVERAGE100.0056637877555851595453304444565057
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Jakub VranaSenators (OTT)LW/RW21171431900811109418015.60%231615.07347725000001147.37%19302001.9600000712
2Janne KuokkanenSenators (OTT)C/LW/RW21151429-265351020139447210.79%539718.9394133256000003153.02%298395111.4600322410
3Mark McNeillSenators (OTT)C/RW211091982010112884284111.90%832415.44314924000002150.21%235206001.1700110241
4Christian ThomasSenators (OTT)RW214610000426820405.88%31708.1320225000000041.18%17122001.1700000013
5Joseph MorrowSenators (OTT)D210886401611211490.00%1330714.660000200002000.00%0111000.5200000012
6Tyler BertuzziSenators (OTT)LW21527-1601655123269.80%61888.9600000000010026.32%19219000.7411000022
7Joseph BlandisiSenators (OTT)C/RW21246-1121015243312196.06%51979.3811231000000058.36%341100000.6100011011
8Nikita SoshnikovSenators (OTT)LW/RW21044-1551973010260.00%421110.07022310000000038.10%42107000.3823001002
9Petter GranbergSenators (OTT)D21011-212101636230.00%111959.320000000000000.00%0310000.1000002000
10Hunter ShinkarukSenators (OTT)LW7011-21951010570.00%0456.500000000000000.00%012000.4400100000
11Cameron GaunceSenators (OTT)D21000-2155966510.00%61999.520000000000000.00%006000.0000001001
12Mirco MuellerSenators (OTT)D8000-100155840.00%911314.180000000000000.00%003000.0000000000
Team Total or Average225536311611158801261225622123289.43%72266811.8618123056126000046352.73%97114763110.8734547131114
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Jake PatersonSenators (OTT)83320.8784.134804033270176000.000088010
Team Total or Average83320.8784.134804033270176000.000088010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Anthony StolarzSenators (OTT)G241994-01-19No210 Lbs6 ft6NoNoNo2RFAPro & Farm650,000$650,000$Link
Brian HartSenators (OTT)LW/RW241993-11-25No203 Lbs6 ft2NoNoNo1RFAPro & Farm800,000$Link
Cameron GaunceSenators (OTT)D271991-03-19No210 Lbs6 ft1NoNoNo1RFAPro & Farm650,000$Link
Christian ThomasSenators (OTT)RW251993-05-26No175 Lbs5 ft9NoNoNo1RFAPro & Farm650,000$Link
Cole CasselsSenators (OTT)C231995-05-04No178 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$Link
Dmytro TimashovSenators (OTT)LW221996-09-30Yes195 Lbs5 ft10NoNoNo2RFAPro & Farm500,000$500,000$Link
Duncan SiemensSenators (OTT)D251993-09-07No210 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$750,000$Link
Frank CorradoSenators (OTT)D241994-03-26No205 Lbs6 ft0NoNoNo2RFAPro & Farm850,000$850,000$Link
Hunter ShinkarukSenators (OTT)LW241994-10-13No181 Lbs5 ft10NoNoNo2RFAPro & Farm850,000$850,000$Link
Jake PatersonSenators (OTT)RW241994-05-02Yes176 Lbs6 ft1NoNoNo1RFAPro & Farm750,000$Link
Jakob Forsbacka KarlssonSenators (OTT)C221996-10-31Yes184 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Jakub VranaSenators (OTT)LW/RW221996-02-28No195 Lbs6 ft0NoNoNo1RFAPro & Farm950,000$Link
Janne KuokkanenSenators (OTT)C/LW/RW201998-05-25Yes188 Lbs6 ft1NoNoNo3ELCPro & Farm750,000$750,000$750,000$Link
Jeff SchultzSenators (OTT)D311987-07-15 1:46:14 PMNo217 Lbs6 ft6NoNoNo1UFAPro & Farm900,000$Link
Jimmy LodgeSenators (OTT)C/RW231995-03-04No166 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$Link
Jordan SchmaltzSenators (OTT)D251993-10-08No190 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
Jordan SubbanSenators (OTT)D231995-03-03No175 Lbs5 ft9NoNoNo1RFAPro & Farm600,000$Link
Joseph BlandisiSenators (OTT)C/RW241994-07-18No182 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Joseph MorrowSenators (OTT)D251992-12-09No199 Lbs6 ft0NoNoNo3RFAPro & Farm850,000$850,000$850,000$Link
Mark McNeillSenators (OTT)C/RW251993-02-21No214 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Matt FinnSenators (OTT)D241994-02-23No199 Lbs6 ft0NoNoNo2RFAPro & Farm650,000$650,000$Link
Michael DowningSenators (OTT)D231995-05-19No205 Lbs6 ft3NoNoNo2RFAPro & Farm650,000$650,000$Link
Mirco Mueller (Out of Payroll)Senators (OTT)D231995-03-20No210 Lbs6 ft3NoNoNo2RFAPro & Farm850,000$850,000$Link
Mitchell Vande SompelSenators (OTT)D211997-02-11Yes192 Lbs5 ft10NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Nikita SoshnikovSenators (OTT)LW/RW251993-10-14No190 Lbs5 ft11NoNoNo2RFAPro & Farm1,600,000$1,600,000$Link
Nikolay GoldobinSenators (OTT)LW/RW231995-10-07No185 Lbs5 ft11NoNoNo1RFAPro & Farm900,000$Link
Paul BittnerSenators (OTT)LW221996-11-03Yes214 Lbs6 ft4NoNoNo2RFAPro & Farm850,000$850,000$Link
Petter GranbergSenators (OTT)D261992-08-27No200 Lbs6 ft3NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Radel FazleevSenators (OTT)C/LW221996-01-06Yes176 Lbs6 ft1NoNoNo2RFAPro & Farm575,000$575,000$Link
Rinat ValievSenators (OTT)D231995-05-11No215 Lbs6 ft3NoNoNo1RFAPro & Farm750,000$Link
Roland McKeownSenators (OTT)D221996-01-19No195 Lbs6 ft1NoNoNo2RFAPro & Farm800,000$800,000$Link
Scott MayfieldSenators (OTT)D261992-10-14No224 Lbs6 ft4NoNoNo3RFAPro & Farm850,000$850,000$850,000$Link
Stuart PercySenators (OTT)D251993-05-17No187 Lbs6 ft1NoNoNo2RFAPro & Farm650,000$650,000$Link
Timo MeierSenators (OTT)LW/RW221996-10-08No210 Lbs6 ft0NoNoNo2RFAPro & Farm950,000$950,000$Link
Timothy LiljegrenSenators (OTT)D191999-04-30Yes192 Lbs6 ft0NoNoNo3ELCPro & Farm900,000$900,000$900,000$Link
Tyler BertuzziSenators (OTT)LW231995-02-23No198 Lbs6 ft0NoNoNo1RFAPro & Farm800,000$Link
Tyler BiggsSenators (OTT)RW251993-04-29No205 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3723.68196 Lbs6 ft11.81769,595$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Janne Kuokkanen40122
2Mark McNeillJakub Vrana30122
3Tyler BertuzziJoseph BlandisiNikita Soshnikov20122
4Christian Thomas10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Joseph Morrow30122
3Petter GranbergCameron Gaunce20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Janne Kuokkanen60122
2Mark McNeillJakub Vrana40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Joseph Morrow40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Tyler Bertuzzi40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Joseph Morrow40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Joseph Morrow40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Tyler Bertuzzi40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Joseph Morrow40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Janne Kuokkanen
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Janne Kuokkanen
Extra Forwards
Normal PowerPlayPenalty Kill
Nikita Soshnikov, Christian Thomas, Joseph BlandisiNikita Soshnikov, Christian ThomasJoseph Blandisi
Extra Defensemen
Normal PowerPlayPenalty Kill
Petter Granberg, Cameron Gaunce, Petter GranbergCameron Gaunce,
Penalty Shots
, , Tyler Bertuzzi, , Jakub Vrana
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals11000000321110000003210000000000021.000369002125383402502292841028871811100.00%10100.00%023244252.49%17836848.37%20138652.07%500350492157289139
2Americans20200000715-820200000715-80000000000000.00071118002125383672502292841085223925100.00%12741.67%023244252.49%17836848.37%20138652.07%500350492157289139
3Bears1000010023-1000000000001000010023-110.5002460021253833825022928410431621194125.00%3166.67%023244252.49%17836848.37%20138652.07%500350492157289139
4Bruins210000101284100000107611100000052341.0001221330021253839025022928410611213214125.00%4175.00%023244252.49%17836848.37%20138652.07%500350492157289139
5Checkers1000010034-11000010034-10000000000010.50036900212538335250229284103372382150.00%4175.00%023244252.49%17836848.37%20138652.07%500350492157289139
6Comets11000000422000000000001100000042221.00048120021253834225022928410261421105120.00%30100.00%023244252.49%17836848.37%20138652.07%500350492157289139
7Condors20000110440100000103211000010012-130.7504590021253835425022928410611728186233.33%40100.00%023244252.49%17836848.37%20138652.07%500350492157289139
8Devils21000010853000000000002100001085341.0008111900212538371250229284106326201411436.36%5180.00%023244252.49%17836848.37%20138652.07%500350492157289139
9IceCaps11000000541110000005410000000000021.0005914002125383452502292841033118123266.67%4175.00%023244252.49%17836848.37%20138652.07%500350492157289139
10Marlies211000008711010000034-11100000053220.500815230021253836725022928410452018285240.00%9277.78%023244252.49%17836848.37%20138652.07%500350492157289139
11Monsters11000000532000000000001100000053221.000510150021253833025022928410261123125360.00%40100.00%023244252.49%17836848.37%20138652.07%500350492157289139
12Penguins11000000642000000000001100000064221.0006121800212538339250229284103342166233.33%10100.00%023244252.49%17836848.37%20138652.07%500350492157289139
13Phantoms11000000826000000000001100000082621.0008142200212538330250229284103411181744100.00%4250.00%023244252.49%17836848.37%20138652.07%500350492157289139
14Pirates20100100810-220100100810-20000000000010.250814220021253837625022928410672213177228.57%4250.00%023244252.49%17836848.37%20138652.07%500350492157289139
Since Last GM Reset219500430877981125002204353-10107000210442618280.6678715424110212538376625022928410674210268248652640.00%692169.57%123244252.49%17836848.37%20138652.07%500350492157289139
Total219500430877981125002204353-10107000210442618280.6678715424110212538376625022928410674210268248652640.00%692169.57%123244252.49%17836848.37%20138652.07%500350492157289139
Vs Conference16650032071683915002103749-1275000110341915190.5947112519610212538360025022928410533160189190481939.58%572163.16%123244252.49%17836848.37%20138652.07%500350492157289139
Vs Division933000104044-4713000103039-922000000105580.444407011000212538334525022928410291879110320735.00%331360.61%023244252.49%17836848.37%20138652.07%500350492157289139
19Wolf Pack1010000046-21010000046-20000000000000.000481210212538342250229284103691413100.00%7357.14%123244252.49%17836848.37%20138652.07%500350492157289139

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2128OTL18715424176667421026824810
All Games
GPWLOTWOTL SOWSOLGFGA
219504308779
Home Games
GPWLOTWOTL SOWSOLGFGA
112502204353
Visitor Games
GPWLOTWOTL SOWSOLGFGA
107002104426
Last 10 Games
WLOTWOTL SOWSOL
620200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
652640.00%692169.57%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
250229284102125383
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
23244252.49%17836848.37%20138652.07%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
500350492157289139


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-026IceCaps4Senators5WBoxScore
5 - 2018-10-0627Senators5Bruins2WBoxScore
7 - 2018-10-0845Marlies4Senators3LBoxScore
10 - 2018-10-1166Americans6Senators3LBoxScore
13 - 2018-10-1489Senators2Bears3LXBoxScore
15 - 2018-10-16101Americans9Senators4LBoxScore
17 - 2018-10-18118Senators5Monsters3WBoxScore
18 - 2018-10-19129Senators1Condors2LXBoxScore
20 - 2018-10-21138Condors2Senators3WXXBoxScore
23 - 2018-10-24160Bruins6Senators7WXXBoxScore
25 - 2018-10-26180Senators5Marlies3WBoxScore
26 - 2018-10-27189Senators5Devils3WBoxScore
28 - 2018-10-29202Wolf Pack6Senators4LBoxScore
31 - 2018-11-01220Pirates4Senators3LBoxScore
33 - 2018-11-03236Senators8Phantoms2WBoxScore
35 - 2018-11-05250Senators4Comets2WBoxScore
37 - 2018-11-07261Pirates6Senators5LXBoxScore
40 - 2018-11-10284 Admirals2Senators3WBoxScore
42 - 2018-11-12303Senators6Penguins4WBoxScore
44 - 2018-11-14312Senators3Devils2WXXBoxScore
45 - 2018-11-15325Checkers4Senators3LXBoxScore
48 - 2018-11-18345Marlies-Senators-
49 - 2018-11-19357Senators-Wild-
52 - 2018-11-22375IceCaps-Senators-
54 - 2018-11-24389Senators-Barracuda-
56 - 2018-11-26404Senators-Crunch-
58 - 2018-11-28416Heat-Senators-
60 - 2018-11-30431Senators-Condors-
62 - 2018-12-02445IceCaps-Senators-
64 - 2018-12-04457Senators-Monsters-
66 - 2018-12-06475Wolves-Senators-
71 - 2018-12-11503Gulls-Senators-
73 - 2018-12-13521Senators-Wolf Pack-
75 - 2018-12-15534Marlies-Senators-
78 - 2018-12-18558Reign-Senators-
80 - 2018-12-20570Senators-Checkers-
83 - 2018-12-23586Senators-Marlies-
84 - 2018-12-24597Wolf Pack-Senators-
87 - 2018-12-27622Senators-Bears-
88 - 2018-12-28629Phantoms-Senators-
91 - 2018-12-31654Bears-Senators-
92 - 2019-01-01662Senators-Checkers-
96 - 2019-01-05685Falcons-Senators-
99 - 2019-01-08711Senators-Americans-
100 - 2019-01-09718Sound Tigers-Senators-
103 - 2019-01-12745Condors-Senators-
105 - 2019-01-14764Senators-IceCaps-
107 - 2019-01-16776Senators-Heat-
108 - 2019-01-17780Falcons-Senators-
111 - 2019-01-20804Senators-Americans-
112 - 2019-01-21810Bruins-Senators-
115 - 2019-01-24831Senators-Phantoms-
117 - 2019-01-26842Devils-Senators-
119 - 2019-01-28860Senators-Ice Hogs-
121 - 2019-01-30871Senators-Heat-
122 - 2019-01-31879Comets-Senators-
125 - 2019-02-03896Senators-Bruins-
127 - 2019-02-05907Griffins-Senators-
131 - 2019-02-09932Americans-Senators-
133 - 2019-02-11950Senators-IceCaps-
135 - 2019-02-13964Moose-Senators-
139 - 2019-02-17993Moose-Senators-
140 - 2019-02-18999Senators-Pirates-
143 - 2019-02-211024Crunch-Senators-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231033Senators-Stars-
147 - 2019-02-251047Senators-Pirates-
148 - 2019-02-261057Penguins-Senators-
152 - 2019-03-021086Penguins-Senators-
153 - 2019-03-031089Senators-Sound Tigers-
157 - 2019-03-071117Crunch-Senators-
158 - 2019-03-081123Senators-Moose-
162 - 2019-03-121148Wolves-Senators-
163 - 2019-03-131156Senators-Bruins-
164 - 2019-03-141161Senators-Sound Tigers-
165 - 2019-03-151163Senators-Moose-
166 - 2019-03-161169Senators-Rampage-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,762,500$ 2,485,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
748,537$ 0$ 748,537$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 16,443$ 2,022,489$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
2018219500430877981125002204353-10107000210442618288715424110212538376625022928410674210268248652640.00%692169.57%123244252.49%17836848.37%20138652.07%500350492157289139
Total Regular Season219500430877981125002204353-10107000210442618288715424110212538376625022928410674210268248652640.00%692169.57%123244252.49%17836848.37%20138652.07%500350492157289139