Marlies

GP: 49 | W: 23 | L: 24 | OTL: 2 | P: 48
GF: 138 | GA: 171 | PP%: 22.70% | PK%: 72.90%
GM : Stephane Boudreau | Morale : 50 | Team Overall : 59
Next Games #736 vs Phantoms
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Jimmy VeseyXX100.007644918075679768406273627560607150660
2Charles HudonX100.008344847463668270497366592553536950640
3Daniel CarrX100.007143927870627267317170642556567050640
4Ty RattieX100.007142957365706569257275572548487650630
5Martin FrkX100.007644927171568576256670532552526950630
6Ryan CarpenterXXX100.008055927268637461796170752551517050630
7Jordan WealX100.005940947163648573466562607557576650620
8Michael McCarronXX100.009999537291528457735655672552526250610
9John HaydenXX100.009096697384576057466559732550506550610
10Tanner FritzX100.008244916969638264526159692547476550610
11Tanner KeroXX100.007368837768737761765758655553536450610
12Sam Anas (R)XX100.006857926257798267806565626244446750610
13Brett LernoutX100.009647897478709055254647732545456150650
14Victor Mete (R)X100.005540978165686367255247642555555950610
15Lucas Johansen (R)X100.007467906667798750254541613944445550590
16Jake Walman (R)X100.007874877174656950254541633944445550590
17Samuel MorinX100.008179866479616353255041653944445550590
Scratches
1Ryan HaggertyX100.007773866873666766506365666244446650610
2Nikita ScherbakXX100.006942907666657766255868582546466750600
3Hudson FaschingX100.008179877279717557505356665346466250600
4C.J. Smith (R)X100.007366907066656664506362645944446550600
5Danick MartelXX100.006457816757768062785366596344446450590
6Kyle BaunX100.007976866876808752505346644444445850580
7Adam HelewkaX100.007976876876555460506254665144446150580
8Andrew MangiapaneX100.007342937863545757255055562544445950550
9Tyrell GoulbourneX100.007670906470616451504751624844445750540
10Filip Sandberg (R)XX100.007164886264586054684756605344445750540
11Jean-Christophe Beaudin (R)XX100.007569906269636749614746614444445550540
12Zach SanfordXXX100.006242847376323055425655564244445750530
13Markus EisenschmidXX100.007267846367616450634748604644445450530
14Malte Stromwall (R)XX100.007468876668606348504546604444445450530
15Adam Musil (R)X100.007976876676505149614746634444445450530
16Christian DjoosX100.006140948058648161255348582551515850590
17Calle Rosen (R)X100.007366896566667051254641603944445450570
18Jacob GravesX100.007472786572535451253751614844445650550
19Tommy VannelliX100.007564996564505148253942614044445250540
20Damir Sharipzianov (R)X100.006669606569596344254439553744444850530
TEAM AVERAGE100.00756187707063705844555562414747615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Cal Petersen (R)100.00656986786470637169683044446750650
2Mac Carruth100.00475164754547505347483044444950510
Scratches
TEAM AVERAGE100.0056607577555957625858304444585058
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Daniel CarrMarlies (TOR)LW49111526-15115443214552797.59%3071014.5101116202151362126.19%844933000.7303010851
2Charles HudonMarlies (TOR)LW4961218-795132310835725.56%114689.56000000114310152.17%46258100.7723010413
3Jordan WealMarlies (TOR)C497815-184095260224511.67%2150410.3010112000001144.03%963713000.5911000116
4Martin FrkMarlies (TOR)RW4951015-17161026159725595.15%1350510.3200002000000037.93%582910000.5900110133
5Sam AnasMarlies (TOR)C/RW496915-455457737577.79%43306.7500000000000060.00%5133000.9101100232
6Tanner FritzMarlies (TOR)C495611-7101015347523466.67%123958.0700000000000142.26%407615000.5600101331
7Michael McCarronMarlies (TOR)C/RW49257-81417538213310186.06%113978.1100000000001054.55%2268000.3500447104
8Christian DjoosMarlies (TOR)D36055-8207182512140.00%2655315.380000200000000.00%0021000.1800000012
9Lucas JohansenMarlies (TOR)D49011-114101397360.00%174619.420000000000000.00%0119000.0401110020
10John HaydenMarlies (TOR)C/LW6011-4404214570.00%0508.4900000000040057.14%752000.3900000000
11Ryan HaggertyMarlies (TOR)RW36011100101320.00%0240.670000000000000.00%300000.8301000010
Team Total or Average4704273115-882161201742116422274056.54%14544039.37112214213191734442.82%1595141132100.52310888202022
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mac CarruthMarlies (TOR)113710.8544.365780042287186200.00001111001
Team Total or Average113710.8544.365780042287186200.00001111001


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam HelewkaMarlies (TOR)LW231995-07-20No200 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Adam MusilMarlies (TOR)C241994-03-26Yes202 Lbs6 ft3NoNoNo3RFAPro & Farm650,000$0$0$NoLink
Andrew MangiapaneMarlies (TOR)LW221996-04-03No184 Lbs5 ft10NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Brett LernoutMarlies (TOR)D231995-09-23No213 Lbs6 ft4NoNoNo1RFAPro & Farm750,000$0$0$NoLink
C.J. SmithMarlies (TOR)LW241994-12-01Yes185 Lbs5 ft11NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Cal PetersenMarlies (TOR)G241994-10-19Yes182 Lbs6 ft1NoNoNo3RFAPro & Farm950,000$0$0$NoLink
Calle RosenMarlies (TOR)D241994-02-02Yes176 Lbs6 ft0NoNoNo3RFAPro & Farm1,000,000$0$0$NoLink
Charles HudonMarlies (TOR)LW241994-06-23No195 Lbs5 ft10NoNoNo2RFAPro & Farm875,000$0$0$NoLink
Christian DjoosMarlies (TOR)D241994-08-06No164 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Damir SharipzianovMarlies (TOR)D221996-02-21Yes187 Lbs6 ft1NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Danick MartelMarlies (TOR)C/LW241994-12-12No162 Lbs5 ft8NoNoNo2RFAPro & Farm700,000$0$0$NoLink
Daniel CarrMarlies (TOR)LW271991-11-01No188 Lbs6 ft0NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Filip SandbergMarlies (TOR)C/RW241994-07-23Yes181 Lbs5 ft9NoNoNo4RFAPro & Farm850,000$0$0$NoLink
Hudson FaschingMarlies (TOR)RW231995-07-28No209 Lbs6 ft2NoNoNo2RFAPro & Farm600,000$0$0$NoLink
Jacob GravesMarlies (TOR)D231995-03-27No192 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Jake WalmanMarlies (TOR)D221996-02-20Yes170 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Jean-Christophe BeaudinMarlies (TOR)C/RW211997-03-25Yes185 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Jimmy VeseyMarlies (TOR)LW/RW251993-05-26No207 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$0$0$NoLink
John HaydenMarlies (TOR)C/LW231995-02-14No223 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Jordan WealMarlies (TOR)C261992-04-15No179 Lbs5 ft10NoNoNo4RFAPro & Farm1,700,000$0$0$NoLink
Kyle BaunMarlies (TOR)RW261992-05-04No209 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Lucas JohansenMarlies (TOR)D211997-11-16Yes176 Lbs6 ft2NoNoNo3RFAPro & Farm900,000$0$0$NoLink
Mac CarruthMarlies (TOR)G261992-03-25No190 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Malte StromwallMarlies (TOR)LW/RW241994-08-23Yes185 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Markus EisenschmidMarlies (TOR)C/RW231995-01-22No169 Lbs6 ft0NoNoNo2RFAPro & Farm550,000$0$0$NoLink
Martin FrkMarlies (TOR)RW251993-10-04No194 Lbs6 ft1NoNoNo2RFAPro & Farm900,000$0$0$NoLink
Michael McCarronMarlies (TOR)C/RW231995-03-06No231 Lbs6 ft6NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Nikita ScherbakMarlies (TOR)LW/RW231995-12-29No190 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Ryan CarpenterMarlies (TOR)C/LW/RW271991-01-17No195 Lbs5 ft10NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Ryan HaggertyMarlies (TOR)RW251993-03-03No201 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Sam AnasMarlies (TOR)C/RW251993-05-31Yes163 Lbs5 ft8NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Samuel MorinMarlies (TOR)D231995-07-11No202 Lbs6 ft6NoNoNo1RFAPro & Farm950,000$0$0$NoLink
Tanner FritzMarlies (TOR)C271991-08-20No192 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$0$0$NoLink
Tanner KeroMarlies (TOR)C/LW261992-07-24No185 Lbs6 ft0NoNoNo3RFAPro & Farm700,000$0$0$NoLink
Tommy VannelliMarlies (TOR)D231995-01-26No165 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Ty RattieMarlies (TOR)RW251993-02-05No178 Lbs6 ft0NoNoNo3RFAPro & Farm800,000$0$0$NoLink
Tyrell GoulbourneMarlies (TOR)LW241994-01-25No195 Lbs5 ft11NoNoNo1RFAPro & Farm750,000$0$0$NoLink
Victor MeteMarlies (TOR)D201998-06-07Yes174 Lbs5 ft10NoNoNo3ELCPro & Farm650,000$0$0$NoLink
Zach SanfordMarlies (TOR)C/LW/RW241994-11-09No192 Lbs6 ft4NoNoNo2RFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3923.90189 Lbs6 ft12.05751,923$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Daniel CarrJordan WealMartin Frk30122
3Charles HudonTanner FritzMichael McCarron20122
4Sam Anas10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
230122
3Lucas Johansen20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Daniel CarrJordan WealMartin Frk40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Daniel Carr60122
2Charles Hudon40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
2Daniel Carr4012240122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Daniel Carr60122
2Charles Hudon40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
240122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
, Tanner Fritz, , Tanner Fritz
Extra Defensemen
Normal PowerPlayPenalty Kill
Lucas Johansen, , Lucas Johansen,
Penalty Shots
, Daniel Carr, Charles Hudon, ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans321000001477110000005142110000096340.6671426400027545181063164474072787312736700.00%6183.33%034975646.16%36081544.17%34176644.52%11438001172351646317
2Barracuda10000010321100000103210000000000021.00034700275451823316447407273313615400.00%3166.67%034975646.16%36081544.17%34176644.52%11438001172351646317
3Bears220000001055110000005231100000053241.0001016260027545185931644740727611723165360.00%4250.00%034975646.16%36081544.17%34176644.52%11438001172351646317
4Bruins421001001418-431100100915-61100000053250.6251426400027545181103164474072712246484916425.00%14471.43%034975646.16%36081544.17%34176644.52%11438001172351646317
5Checkers10001000541100010005410000000000021.0005101500275451827316447407272796124125.00%3166.67%034975646.16%36081544.17%34176644.52%11438001172351646317
6Crunch1010000002-21010000002-20000000000000.000000002754518183164474072725898300.00%20100.00%034975646.16%36081544.17%34176644.52%11438001172351646317
7Devils211000006601010000025-31100000041320.500611170027545184731644740727481728235240.00%4250.00%034975646.16%36081544.17%34176644.52%11438001172351646317
8Falcons1010000023-1000000000001010000023-100.000235002754518273164474072726101212200.00%6266.67%034975646.16%36081544.17%34176644.52%11438001172351646317
9Griffins1010000023-11010000023-10000000000000.000246002754518233164474072732139911100.00%20100.00%034975646.16%36081544.17%34176644.52%11438001172351646317
10Gulls2110000058-3000000000002110000058-320.50051015002754518453164474072767143521600.00%10460.00%134975646.16%36081544.17%34176644.52%11438001172351646317
11Heat11000000422110000004220000000000021.000461000275451820316447407273517442150.00%20100.00%034975646.16%36081544.17%34176644.52%11438001172351646317
12Ice Hogs11000000431110000004310000000000021.0004812002754518173164474072725118124375.00%4175.00%034975646.16%36081544.17%34176644.52%11438001172351646317
13IceCaps60500010928-1930300000216-1430200010712-520.167916250027545181273164474072719166697314214.29%22577.27%034975646.16%36081544.17%34176644.52%11438001172351646317
14Monsters1010000012-1000000000001010000012-100.00012300275451815316447407272578155120.00%4175.00%034975646.16%36081544.17%34176644.52%11438001172351646317
15Moose311010001112-12110000057-21000100065140.66711182900275451886316447407278134202910330.00%5260.00%034975646.16%36081544.17%34176644.52%11438001172351646317
16Penguins11000000642000000000001100000064221.00061117002754518233164474072732154153133.33%20100.00%134975646.16%36081544.17%34176644.52%11438001172351646317
17Phantoms1010000045-11010000045-10000000000000.000481200275451828316447407273715351111100.00%5340.00%034975646.16%36081544.17%34176644.52%11438001172351646317
18Pirates11000000321000000000001100000032121.0003690027545182931644740727361016422100.00%3233.33%134975646.16%36081544.17%34176644.52%11438001172351646317
19Rampage1010000025-31010000025-30000000000000.0002460027545183231644740727235914100.00%20100.00%034975646.16%36081544.17%34176644.52%11438001172351646317
20Reign31101000880000000000003110100088040.667816240027545185931644740727603244181119.09%12191.67%034975646.16%36081544.17%34176644.52%11438001172351646317
21Senators522000011318-52110000067-131100001711-450.5001324371027545181243164474072716554537724520.83%9366.67%134975646.16%36081544.17%34176644.52%11438001172351646317
22Sound Tigers3020100047-31010000014-32010100033020.33348120027545185931644740727893063337114.29%14378.57%034975646.16%36081544.17%34176644.52%11438001172351646317
Total49172404121138171-3323812011106284-2226912030117687-11480.49013825239010275451811843164474072714565155855471413222.70%1554272.90%434975646.16%36081544.17%34176644.52%11438001172351646317
24Wolf Pack41300000817-91100000031230300000516-1120.250815230027545188031644740727129414941400.00%17476.47%034975646.16%36081544.17%34176644.52%11438001172351646317
_Since Last GM Reset49172404121138171-3323812011106284-2226912030117687-11480.49013825239010275451811843164474072714565155855471413222.70%1554272.90%434975646.16%36081544.17%34176644.52%11438001172351646317
_Vs Conference37131803111107135-2818610011004769-221978020116066-6360.4861071953021027545189233164474072711303934504271052523.81%1103270.91%334975646.16%36081544.17%34176644.52%11438001172351646317
_Vs Division2169001115578-231135001002444-201034000113134-3160.3815510215710275451853731644740727658228231256671420.90%581574.14%234975646.16%36081544.17%34176644.52%11438001172351646317

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4948W11382523901184145651558554710
All Games
GPWLOTWOTL SOWSOLGFGA
4917244121138171
Home Games
GPWLOTWOTL SOWSOLGFGA
2381211106284
Visitor Games
GPWLOTWOTL SOWSOLGFGA
2691230117687
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1413222.70%1554272.90%4
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
316447407272754518
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
34975646.16%36081544.17%34176644.52%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
11438001172351646317


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-025Marlies1Wolf Pack6LBoxScore
3 - 2018-10-0420Bruins3Marlies2LXBoxScore
6 - 2018-10-0738Marlies2Reign4LBoxScore
7 - 2018-10-0845Marlies4Senators3WBoxScore
9 - 2018-10-1058Bears2Marlies5WBoxScore
11 - 2018-10-1272Marlies1IceCaps6LBoxScore
13 - 2018-10-1488Marlies5Bruins3WBoxScore
14 - 2018-10-1593IceCaps6Marlies0LBoxScore
17 - 2018-10-18121Phantoms5Marlies4LBoxScore
20 - 2018-10-21141Moose5Marlies2LBoxScore
21 - 2018-10-22149Marlies3Americans4LBoxScore
22 - 2018-10-23159Marlies4Reign3WXBoxScore
25 - 2018-10-26180Senators5Marlies3LBoxScore
28 - 2018-10-29201Marlies4Gulls2WBoxScore
29 - 2018-10-30210Marlies2Wolf Pack6LBoxScore
30 - 2018-10-31217IceCaps6Marlies1LBoxScore
34 - 2018-11-04241Marlies6Americans2WBoxScore
35 - 2018-11-05248Devils5Marlies2LBoxScore
38 - 2018-11-08271Marlies3Pirates2WBoxScore
39 - 2018-11-09277Griffins3Marlies2LBoxScore
42 - 2018-11-12301Marlies1Gulls6LBoxScore
43 - 2018-11-13307Moose2Marlies3WBoxScore
46 - 2018-11-16333Barracuda2Marlies3WXXBoxScore
48 - 2018-11-18345Marlies3Senators4LXXBoxScore
50 - 2018-11-20363Heat2Marlies4WBoxScore
52 - 2018-11-22377Marlies6Moose5WXBoxScore
55 - 2018-11-25397Ice Hogs3Marlies4WBoxScore
58 - 2018-11-28420Bruins9Marlies3LBoxScore
60 - 2018-11-30436Marlies4Devils1WBoxScore
63 - 2018-12-03452Checkers4Marlies5WXBoxScore
65 - 2018-12-05473Marlies2Sound Tigers1WXBoxScore
67 - 2018-12-07483Americans1Marlies5WBoxScore
69 - 2018-12-09492Marlies2IceCaps3LBoxScore
71 - 2018-12-11508Marlies5Bears3WBoxScore
73 - 2018-12-13518Sound Tigers4Marlies1LBoxScore
75 - 2018-12-15534Marlies0Senators4LBoxScore
77 - 2018-12-17543Marlies1Sound Tigers2LBoxScore
78 - 2018-12-18554IceCaps4Marlies1LBoxScore
81 - 2018-12-21576Marlies1Monsters2LBoxScore
83 - 2018-12-23586Senators2Marlies3WBoxScore
84 - 2018-12-24599Marlies6Penguins4WBoxScore
86 - 2018-12-26616Rampage5Marlies2LBoxScore
89 - 2018-12-29639Marlies2Reign1WBoxScore
90 - 2018-12-30646Wolf Pack1Marlies3WBoxScore
93 - 2019-01-02669Marlies2Wolf Pack4LBoxScore
94 - 2019-01-03678Crunch2Marlies0LBoxScore
96 - 2019-01-05692Marlies4IceCaps3WXXBoxScore
98 - 2019-01-07705Marlies2Falcons3LBoxScore
99 - 2019-01-08713Bruins3Marlies4WBoxScore
102 - 2019-01-11736Marlies-Phantoms-
103 - 2019-01-12744Reign-Marlies-
106 - 2019-01-15771Bears-Marlies-
108 - 2019-01-17779Marlies-Comets-
110 - 2019-01-19798Marlies-Condors-
111 - 2019-01-20805Bears-Marlies-
114 - 2019-01-23827Marlies-Crunch-
116 - 2019-01-25835Pirates-Marlies-
118 - 2019-01-27851Marlies-Checkers-
120 - 2019-01-29865Crunch-Marlies-
125 - 2019-02-03898Wolves-Marlies-
128 - 2019-02-06917Marlies-Bruins-
130 - 2019-02-08927Phantoms-Marlies-
132 - 2019-02-10940Marlies-Stars-
134 - 2019-02-12958Americans-Marlies-
136 - 2019-02-14976Marlies-Devils-
138 - 2019-02-16989Pirates-Marlies-
140 - 2019-02-181005Marlies-Wolves-
141 - 2019-02-191011Marlies-Bruins-
143 - 2019-02-211022Penguins-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
145 - 2019-02-231036Marlies-Reign-
147 - 2019-02-251054Penguins-Marlies-
152 - 2019-03-021084Monsters-Marlies-
156 - 2019-03-061110Checkers-Marlies-
160 - 2019-03-101135Wild-Marlies-
164 - 2019-03-141158 Admirals-Marlies-
166 - 2019-03-161176Marlies-Americans-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,728,045$ 2,932,500$ 2,567,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,728,045$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 17,455$ 1,204,395$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
201849172404121138171-3323812011106284-2226912030117687-114813825239010275451811843164474072714565155855471413222.70%1554272.90%434975646.16%36081544.17%34176644.52%11438001172351646317
Total Regular Season49172404121138171-3323812011106284-2226912030117687-114813825239010275451811843164474072714565155855471413222.70%1554272.90%434975646.16%36081544.17%34176644.52%11438001172351646317