Marlies

GP: 7 | W: 4 | L: 3 | OTL: 0 | P: 8
GF: 17 | GA: 15 | PP%: 10.34% | PK%: 60.87%
GM : Stephane Boudreau | Morale : 52 | Team Overall : 59
Next Games vs Senators
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Charles HudonX100.008344847463668270497366592553536953640
2Daniel CarrX98.007143927870627267317170642556567053640
3Martin FrkX100.007644927171568576256670532552526953630
4Jordan WealX100.005940947163648573466562607557576653620
5Michael McCarronXX100.009999537291528457735655672552526253610
6John HaydenXX100.009096697384576057466559732550506550610
7Tanner FritzX100.008244916969638264526159692547476553610
8Tanner KeroXX100.007368837768737761765758655553536448610
9Ryan HaggertyX100.007773866873666766506365666244446653610
10Sam Anas (R)XX100.006857926257798267806565626244446753610
11Hudson FaschingX100.008179877279717557505356665346466248600
12C.J. Smith (R)X100.007366907066656664506362645944446548600
13Christian DjoosX100.006140948058648161255348582551515853590
14Lucas Johansen (R)X100.007467906667798750254541613944445553590
15Jake Walman (R)X100.007874877174656950254541633944445548590
16Samuel MorinX100.008179866479616353255041653944445548580
Scratches
1Jimmy VeseyXX98.007644918075679768406273627560607150660
2Ty RattieX98.007142957365706569257275572548487653630
3Ryan CarpenterXXX98.008055927268637461796170752551517053630
4Nikita ScherbakXX100.006942907666657766255868582546466748600
5Danick MartelXX100.006457816757768062785366596344446448590
6Kyle BaunX100.007976866876808752505346644444445848580
7Adam HelewkaX100.007976876876555460506254665144446148580
8Andrew MangiapaneX100.007342937863545757255055562544445948550
9Tyrell GoulbourneX100.007670906470616451504751624844445748540
10Filip Sandberg (R)XX100.007164886264586054684756605344445748540
11Jean-Christophe Beaudin (R)XX100.007569906269636749614746614444445548540
12Zach SanfordXXX100.006242847376323055425655564244445748530
13Markus EisenschmidXX100.007267846367616450634748604644445448530
14Malte Stromwall (R)XX100.007468876668606348504546604444445448530
15Adam Musil (R)X100.007976876676505149614746634444445448530
16Brett LernoutX98.009647897478709055254647732545456153650
17Victor Mete (R)X88.635540978165686367255247642555555953610
18Calle Rosen (R)X100.007366896566667051254641603944445448570
19Jacob GravesX100.007472786572535451253751614844445648550
20Tommy VannelliX100.007564996564505148253942614044445248540
21Damir Sharipzianov (R)X100.006669606569596344254439553744444848530
TEAM AVERAGE99.42756187707063705844555562414747615059
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Cal Petersen (R)99.00656986786470637169683044446753650
2Mac Carruth98.00475164754547505347483044444953510
Scratches
TEAM AVERAGE98.5056607577555957625858304444585358
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Ty RattieMarlies (TOR)RW56612110011231111119.35%210120.32101322000051050.00%1044012.3600000210
2Jimmy VeseyMarlies (TOR)LW/RW45611795512461420.83%79523.870111160002101050.00%3053002.3000010111
3Martin FrkMarlies (TOR)RW76410440952631623.08%210615.28011517000002020.00%522011.8700000100
4Daniel CarrMarlies (TOR)LW72574201271451614.29%612918.520000170000160012.50%890001.0800000011
5Jordan WealMarlies (TOR)C74374201214123633.33%210715.30101117000000142.74%12424001.3100000012
6Ryan CarpenterMarlies (TOR)C/LW/RW5167110087931111.11%49619.24011022000000054.20%13130001.4600000001
7Mikhail SergachevMaple LeafsD3055620468340.00%28929.6700001500007000.00%031001.1200000000
8Victor MeteMarlies (TOR)D7055500299650.00%915021.5301101600008000.00%0013000.6600000000
9Charles HudonMarlies (TOR)LW7123-460135158106.67%29012.9200000000080033.33%323000.6600000000
10Tanner FritzMarlies (TOR)C7303-400812200415.00%38211.8510122000010045.65%4632000.7200000000
11Brett LernoutMarlies (TOR)D40224201496450.00%1011228.20011118000011000.00%006000.3500000000
12Lucas JohansenMarlies (TOR)D7022100040210.00%38011.430000100000000.00%023000.5000000000
13John HaydenMarlies (TOR)C/LW7022-495658210.00%2628.950000100037009.09%1130000.6400010000
14Christian DjoosMarlies (TOR)D7011600787120.00%513419.1500001600009000.00%024000.1500000000
15Michael McCarronMarlies (TOR)C/RW7011-41351264230.00%47711.0800001000000033.33%310000.2600001000
16Sam AnasMarlies (TOR)C/RW7011-320004030.00%0466.640000000000000.00%011000.4300000000
17Ryan HaggertyMarlies (TOR)RW7000-100122000.00%0223.2400002000000040.00%501000.0000000000
Team Total or Average1052851794351151241021995911214.07%63158615.11358131910005874145.74%3764247021.0000021445
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Cal PetersenMarlies (TOR)43100.8783.75240001512364100.000040000
2Mac CarruthMarlies (TOR)31200.8405.7015800159455000.000037000
Team Total or Average74300.8624.523980030217119100.000077000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Adam HelewkaMarlies (TOR)LW231995-07-20No200 Lbs6 ft1NoNoNo2RFAPro & Farm600,000$600,000$Link
Adam MusilMarlies (TOR)C241994-03-26Yes202 Lbs6 ft3NoNoNo3RFAPro & Farm650,000$650,000$650,000$Link
Andrew MangiapaneMarlies (TOR)LW221996-04-03No184 Lbs5 ft10NoNoNo2RFAPro & Farm500,000$500,000$Link
Brett LernoutMarlies (TOR)D231995-09-23No213 Lbs6 ft4NoNoNo1RFAPro & Farm750,000$Link
C.J. SmithMarlies (TOR)LW231994-12-01Yes185 Lbs5 ft11NoNoNo2RFAPro & Farm700,000$700,000$Link
Cal PetersenMarlies (TOR)G231994-10-19Yes182 Lbs6 ft1NoNoNo3RFAPro & Farm950,000$950,000$950,000$Link
Calle RosenMarlies (TOR)D241994-02-02Yes176 Lbs6 ft0NoNoNo3RFAPro & Farm1,000,000$1,000,000$1,000,000$Link
Charles HudonMarlies (TOR)LW241994-06-23No195 Lbs5 ft10NoNoNo2RFAPro & Farm875,000$875,000$Link
Christian DjoosMarlies (TOR)D241994-08-06No164 Lbs6 ft0NoNoNo1RFAPro & Farm500,000$Link
Damir SharipzianovMarlies (TOR)D221996-02-21Yes187 Lbs6 ft1NoNoNo1RFAPro & Farm650,000$Link
Danick MartelMarlies (TOR)C/LW231994-12-12No162 Lbs5 ft8NoNoNo2RFAPro & Farm700,000$700,000$Link
Daniel CarrMarlies (TOR)LW261991-11-01No188 Lbs6 ft0NoNoNo1RFAPro & Farm900,000$Link
Filip SandbergMarlies (TOR)C/RW241994-07-23Yes181 Lbs5 ft9NoNoNo4RFAPro & Farm850,000$850,000$850,000$850,000$Link
Hudson FaschingMarlies (TOR)RW231995-07-28No209 Lbs6 ft2NoNoNo2RFAPro & Farm600,000$600,000$Link
Jacob GravesMarlies (TOR)D231995-03-27No192 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Jake WalmanMarlies (TOR)D221996-02-20Yes170 Lbs6 ft1NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Jean-Christophe BeaudinMarlies (TOR)C/RW211997-03-25Yes185 Lbs6 ft1NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Jimmy VeseyMarlies (TOR)LW/RW251993-05-26No207 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$750,000$Link
John HaydenMarlies (TOR)C/LW231995-02-14No223 Lbs6 ft3NoNoNo2RFAPro & Farm750,000$750,000$Link
Jordan WealMarlies (TOR)C261992-04-15No179 Lbs5 ft10NoNoNo4RFAPro & Farm1,700,000$1,700,000$1,700,000$1,700,000$Link
Kyle BaunMarlies (TOR)RW261992-05-04No209 Lbs6 ft2NoNoNo1RFAPro & Farm650,000$Link
Lucas JohansenMarlies (TOR)D201997-11-16Yes176 Lbs6 ft2NoNoNo3ELCPro & Farm900,000$900,000$900,000$Link
Mac CarruthMarlies (TOR)G261992-03-25No190 Lbs6 ft2NoNoNo1RFAPro & Farm500,000$Link
Malte StromwallMarlies (TOR)LW/RW241994-08-23Yes185 Lbs6 ft0NoNoNo1RFAPro & Farm650,000$Link
Markus EisenschmidMarlies (TOR)C/RW231995-01-22No169 Lbs6 ft0NoNoNo2RFAPro & Farm550,000$550,000$Link
Martin FrkMarlies (TOR)RW241993-10-04No194 Lbs6 ft1NoNoNo2RFAPro & Farm900,000$900,000$Link
Michael McCarronMarlies (TOR)C/RW231995-03-06No231 Lbs6 ft6NoNoNo1RFAPro & Farm900,000$Link
Nikita ScherbakMarlies (TOR)LW/RW221995-12-29No190 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
Ryan CarpenterMarlies (TOR)C/LW/RW271991-01-17No195 Lbs5 ft10NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Ryan HaggertyMarlies (TOR)RW251993-03-03No201 Lbs6 ft0NoNoNo1RFAPro & Farm700,000$Link
Sam AnasMarlies (TOR)C/RW251993-05-31Yes163 Lbs5 ft8NoNoNo1RFAPro & Farm700,000$Link
Samuel MorinMarlies (TOR)D231995-07-11No202 Lbs6 ft6NoNoNo1RFAPro & Farm950,000$Link
Tanner FritzMarlies (TOR)C271991-08-20No192 Lbs5 ft11NoNoNo3RFAPro & Farm600,000$600,000$600,000$Link
Tanner KeroMarlies (TOR)C/LW261992-07-24No185 Lbs6 ft0NoNoNo3RFAPro & Farm700,000$700,000$700,000$Link
Tommy VannelliMarlies (TOR)D231995-01-26No165 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Ty RattieMarlies (TOR)RW251993-02-05No178 Lbs6 ft0NoNoNo3RFAPro & Farm800,000$800,000$800,000$Link
Tyrell GoulbourneMarlies (TOR)LW241994-01-25No195 Lbs5 ft11NoNoNo1RFAPro & Farm750,000$Link
Victor Mete (Out of Payroll)Marlies (TOR)D201998-06-07Yes174 Lbs5 ft10NoNoNo3ELCPro & Farm650,000$650,000$650,000$Link
Zach SanfordMarlies (TOR)C/LW/RW231994-11-09No192 Lbs6 ft4NoNoNo2RFAPro & Farm750,000$750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
3923.69189 Lbs6 ft12.05751,923$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Daniel CarrJordan WealMartin Frk30122
3Charles HudonTanner FritzMichael McCarron20122
4John HaydenSam Anas10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Christian Djoos30122
3Lucas Johansen20122
410122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Daniel CarrJordan WealMartin Frk40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Christian Djoos40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Daniel Carr60122
2Charles Hudon40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Christian Djoos40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
2Daniel Carr40122Christian Djoos40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Daniel Carr60122
2Charles Hudon40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Christian Djoos40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Ryan Haggerty, Tanner Fritz, John HaydenRyan Haggerty, Tanner FritzJohn Hayden
Extra Defensemen
Normal PowerPlayPenalty Kill
Lucas Johansen, Christian Djoos, Lucas JohansenChristian Djoos,
Penalty Shots
, Daniel Carr, Charles Hudon, ,
Goalie
#1 : , #2 : Mac Carruth


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans211000001112-1110000007611010000046-220.50011203100111211072737181088371429700.00%7442.86%06313546.67%6713250.76%5313040.77%153901525811459
2Bruins11000000725000000000001100000072521.000711180011121103473718102376368225.00%30100.00%06313546.67%6713250.76%5313040.77%153901525811459
3IceCaps1010000035-21010000035-20000000000000.00035800111211018737181041101213100.00%6350.00%06313546.67%6713250.76%5313040.77%153901525811459
4Senators21100000990110000007431010000025-320.5009152400111211061737181054203041400.00%5180.00%06313546.67%6713250.76%5313040.77%153901525811459
Since Last GM Reset74300000343133210000017152422000001716180.5713458920011121102257371810231826614529310.34%23960.87%06313546.67%6713250.76%5313040.77%153901525811459
Total74300000343133210000017152422000001716180.5713458920011121102257371810231826614529310.34%23960.87%06313546.67%6713250.76%5313040.77%153901525811459
Vs Conference63300000302823210000017152312000001313060.5003051810011121101857371810206746211920210.00%21861.90%06313546.67%6713250.76%5313040.77%153901525811459
Vs Division63300000302823210000017152312000001313060.5003051810011121101857371810206746211920210.00%21861.90%06313546.67%6713250.76%5313040.77%153901525811459
9Wild11000000431000000000001100000043121.00047110011121104073718102584269111.11%2150.00%06313546.67%6713250.76%5313040.77%153901525811459

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
78L2345892225231826614500
All Games
GPWLOTWOTL SOWSOLGFGA
74300003431
Home Games
GPWLOTWOTL SOWSOLGFGA
32100001715
Visitor Games
GPWLOTWOTL SOWSOLGFGA
42200001716
Last 10 Games
WLOTWOTL SOWSOL
430000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
29310.34%23960.87%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
73718101112110
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
6313546.67%6713250.76%5313040.77%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
153901525811459


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-09-1710Senators4Marlies7WBoxScore
2 - 2018-09-1818Marlies4Wild3WBoxScore
3 - 2018-09-1932Marlies7Bruins2WBoxScore
4 - 2018-09-2048Marlies4Americans6LBoxScore
5 - 2018-09-2160Americans6Marlies7WBoxScore
7 - 2018-09-2374Marlies2Senators5LBoxScore
9 - 2018-09-2591IceCaps5Marlies3LBoxScore
12 - 2018-09-28112Bruins-Marlies-
Trade Deadline --- Trades can’t be done after this day is simulated!
13 - 2018-09-29118Marlies-IceCaps-
17 - 2018-10-03150Wild-Marlies-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
2 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
2,867,500$ 2,567,500$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
0$ 0$ 0$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 9 0$ 0$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT