Moose

GP: 21 | W: 10 | L: 8 | OTL: 3 | P: 23
GF: 44 | GA: 29 | PP%: 28.79% | PK%: 78.69%
GM : Rob Cammaert | Morale : 50 | Team Overall : 60
Next Games vs Crunch
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Scottie UpshallX100.008445797473588559506560822579826850660
2Tom PyattXXX97.006942956567679955366559885369716850650
3Brock McGinnX100.008257907669689060406472657560607150650
4Brad MaloneXX100.007876836676778262785760705761626550630
5Phil VaroneXX100.007266856866848867806962645944446750630
6Chris ThorburnX100.008599676990477459546155692580816250620
7Michael BournivalX100.007470827270737663505762675957586550620
8Dominik SimonXX100.007643857364597966396962612547476650610
9Carter VerhaegheX100.007368836468656664806461645844446550600
10Ryan HamiltonX100.008179856579616259745954665144446150590
11Anthony PelusoX100.008786906586535355504557725459596050580
12Christian FolinX100.009167867580697559255248772561616350670
13Kevin CzuczmanX100.007776806576818854255241633945455650610
14Carson Soucy (R)X100.008480926480667147254039653744445450590
15Connor Clifton (R)X100.007063876463596345253441573944445150530
Scratches
1Kenny AgostinoX100.007574787274828765506560655745456650630
2Corey TroppX100.005968376568646466506365576244446250580
3Colin McDonaldX100.008279896579646754505351664844445950570
4Nick Sorensen (R)X100.007168777168616257505258615544446050570
5Francis Perron (R)X100.006862836062687252505347584544445450540
6Stephen GiontaX100.007063876563565848604546584444445350520
7Kyle Schempp (R)X100.007364935964474749614647604544445350510
TEAM AVERAGE99.86766882677265735850565566475253615060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Mark Visentin95.0061707372637063676662455555150641
Scratches
TEAM AVERAGE95.006170737263706367666245555515064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tom PyattMoose (WPG)C/LW/RW2116925555420139489711.51%441819.954372059000011247.06%173612021.1900100710
2Brock McGinnMoose (WPG)LW211011214101013898295410.20%527212.971561028000002053.13%32287001.5400011422
3Phil VaroneMoose (WPG)C/LW217132045220213060244511.67%226612.67336728000001058.96%541126001.5000202130
4Dominik SimonMoose (WPG)C/LW21178400463414282.94%01456.9200000000000038.64%4482001.1000000203
5Michael BournivalMoose (WPG)LW21257455523911105.13%21416.7400000000000050.00%456000.9900010010
6Brad MaloneMoose (WPG)C/LW21617144309168520437.06%323511.2000001000001056.47%85199000.6000132013
7Chris ThorburnMoose (WPG)RW2133631288028112091515.00%525512.17101225000001042.86%2859000.4700835000
8Kenny AgostinoMoose (WPG)LW63254302021185916.67%16110.32000020000010100.00%161001.6100112100
9Carter VerhaegheMoose (WPG)C2121301410211521413.33%0633.03213515000000046.67%3000000.9400011010
10Connor CliftonMoose (WPG)D2112312620101622664.55%1635316.820000000001000.00%0213000.1700112001
11Carson SoucyMoose (WPG)D21022-170601911169130.00%3033716.060001100001000.00%0120000.1200624000
Team Total or Average2165156107293842601171225461773349.34%68255011.8111122345163000067256.01%78212285020.84002013191599
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mark VisentinMoose (WPG)2110830.9002.8312510059592308000.0000210012
Team Total or Average2110830.9002.8312510059592308000.0000210012


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers CONT StatusType Current Salary Salary Year 2 Salary Year 3 Salary Year 4 Salary Year 5 Salary Year 6 Salary Year 7 Salary Year 8 Salary Year 9 Salary Year 10 Link
Anthony PelusoMoose (WPG)RW281990-04-18No235 Lbs6 ft3NoNoNo2RFAPro & Farm675,000$675,000$Link
Brad MaloneMoose (WPG)C/LW281990-05-20No207 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$650,000$Link
Brock McGinnMoose (WPG)LW241994-01-02No185 Lbs6 ft0NoNoNo2RFAPro & Farm887,500$887,500$Link
Carson SoucyMoose (WPG)D241994-07-24Yes212 Lbs6 ft4NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Carter VerhaegheMoose (WPG)C231995-08-14No181 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$Link
Chris ThorburnMoose (WPG)RW341984-07-15 7:46:14 PMNo235 Lbs6 ft3NoNoNo2UFAPro & Farm975,000$975,000$Link
Christian FolinMoose (WPG)D271991-02-09No204 Lbs6 ft3NoNoNo4RFAPro & Farm955,000$955,000$955,000$955,000$Link
Colin McDonaldMoose (WPG)RW331985-07-15 1:46:14 AMNo219 Lbs6 ft2NoNoNo1UFAPro & Farm900,000$Link
Connor CliftonMoose (WPG)D231995-04-28Yes190 Lbs5 ft11NoNoNo3RFAPro & Farm500,000$500,000$500,000$Link
Corey TroppMoose (WPG)RW281990-07-25No185 Lbs6 ft0NoNoNo3RFAPro & Farm750,000$750,000$750,000$Link
Dominik SimonMoose (WPG)C/LW241994-08-08No176 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$Link
Francis PerronMoose (WPG)LW221996-04-17Yes166 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$500,000$Link
Kenny AgostinoMoose (WPG)LW261992-04-30No200 Lbs6 ft1NoNoNo1RFAPro & Farm875,000$Link
Kevin CzuczmanMoose (WPG)D271991-01-09No206 Lbs6 ft2NoNoNo3RFAPro & Farm900,000$900,000$900,000$Link
Kyle SchemppMoose (WPG)C241994-01-12Yes178 Lbs5 ft11NoNoNo2RFAPro & Farm500,000$500,000$Link
Mark VisentinMoose (WPG)G251993-08-07 4:15:36 AMNo201 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$Link
Michael BournivalMoose (WPG)LW261992-05-31No194 Lbs5 ft11NoNoNo1RFAPro & Farm650,000$Link
Nick SorensenMoose (WPG)RW241994-10-23Yes182 Lbs6 ft1NoNoNo2RFAPro & Farm850,000$850,000$Link
Phil VaroneMoose (WPG)C/LW271990-12-03No193 Lbs5 ft10NoNoNo4RFAPro & Farm750,000$750,000$750,000$750,000$Link
Ryan HamiltonMoose (WPG)LW321986-04-15No219 Lbs6 ft2NoNoNo1UFAPro & Farm650,000$Link
Scottie UpshallMoose (WPG)LW341984-07-15 7:46:14 PMNo200 Lbs6 ft0NoNoNo2UFAPro & Farm950,000$950,000$Link
Stephen GiontaMoose (WPG)RW341984-10-09No175 Lbs5 ft7NoNoNo1UFAPro & Farm990,000$Link
Tom PyattMoose (WPG)C/LW/RW311987-02-14No185 Lbs5 ft11NoNoNo2UFAPro & Farm750,000$750,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2327.30197 Lbs6 ft12.00750,326$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tom Pyatt40122
2Brock McGinnPhil VaroneChris Thorburn30122
3Brad Malone20122
4Michael BournivalDominik Simon10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Carson SoucyConnor Clifton30122
320122
4Carson SoucyConnor Clifton10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Tom Pyatt60122
2Brock McGinnPhil VaroneChris Thorburn40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Carson SoucyConnor Clifton40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Brock McGinnTom Pyatt40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Carson SoucyConnor Clifton40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Carson SoucyConnor Clifton40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Brock McGinnTom Pyatt40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Carson SoucyConnor Clifton40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Tom Pyatt
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tom Pyatt
Extra Forwards
Normal PowerPlayPenalty Kill
Carter Verhaeghe, , Brad MaloneCarter Verhaeghe, Brad Malone
Extra Defensemen
Normal PowerPlayPenalty Kill
, , Carson Soucy, Carson Soucy
Penalty Shots
, , Brock McGinn, Tom Pyatt,
Goalie
#1 : Mark Visentin, #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Americans3120000010100110000005232020000058-320.33310172700212926112525523924841113857449222.22%6266.67%022143351.04%22440555.31%17333851.18%496342489154287140
2Bears321000001789211000008621100000092740.6671729460021292611272552392484942595326116.67%12191.67%022143351.04%22440555.31%17333851.18%496342489154287140
3Checkers11000000431110000004310000000000021.000481200212926131255239248425911106233.33%30100.00%022143351.04%22440555.31%17333851.18%496342489154287140
4Comets1000010034-1000000000001000010034-110.50035800212926134255239248433818144125.00%40100.00%022143351.04%22440555.31%17333851.18%496342489154287140
5Crunch422000001293211000007432110000055040.5001219310021292611242552392484792459461317.69%7271.43%022143351.04%22440555.31%17333851.18%496342489154287140
6IceCaps1000010023-1000000000001000010023-110.50024600212926135255239248432121214200.00%110.00%022143351.04%22440555.31%17333851.18%496342489154287140
7Marlies21100000752000000000002110000075220.50071320002129261532552392484571815243266.67%5180.00%022143351.04%22440555.31%17333851.18%496342489154287140
8Monsters1000010034-11000010034-10000000000010.50035800212926131255239248425343144125.00%40100.00%022143351.04%22440555.31%17333851.18%496342489154287140
9Phantoms11000000422110000004220000000000021.00047110021292613325523924842311281033100.00%4175.00%022143351.04%22440555.31%17333851.18%496342489154287140
10Pirates11000000725110000007250000000000021.00071320002129261482552392484359173173266.67%4175.00%022143351.04%22440555.31%17333851.18%496342489154287140
Since Last GM Reset21980130077591811630110044291510350020033303230.548771362130021292617462552392484600180548256661928.79%611378.69%122143351.04%22440555.31%17333851.18%496342489154287140
12Sound Tigers10001000431100010004310000000000021.0004812002129261362552392484266865240.00%4175.00%122143351.04%22440555.31%17333851.18%496342489154287140
13Stars1010000023-1000000000001010000023-100.0002460021292613625523924842510611400.00%3166.67%022143351.04%22440555.31%17333851.18%496342489154287140
Total21980130077591811630110044291510350020033303230.548771362130021292617462552392484600180548256661928.79%611378.69%122143351.04%22440555.31%17333851.18%496342489154287140
Vs Conference1897011006948211063010004125168340010028235210.583691221910021292616452552392484517159481217541731.48%501276.00%122143351.04%22440555.31%17333851.18%496342489154287140
16Wolf Pack1010000023-11010000023-10000000000000.00024600212926133255239248435723144250.00%4250.00%022143351.04%22440555.31%17333851.18%496342489154287140

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2123OTL17713621374660018054825600
All Games
GPWLOTWOTL SOWSOLGFGA
219813007759
Home Games
GPWLOTWOTL SOWSOLGFGA
116311004429
Visitor Games
GPWLOTWOTL SOWSOLGFGA
103502003330
Last 10 Games
WLOTWOTL SOWSOL
530200
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
661928.79%611378.69%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
25523924842129261
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
22143351.04%22440555.31%17333851.18%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
496342489154287140


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-021Crunch1Moose5WBoxScore
5 - 2018-10-0631Moose9Bears2WBoxScore
6 - 2018-10-0743Crunch3Moose2LBoxScore
10 - 2018-10-1165Wolf Pack3Moose2LBoxScore
12 - 2018-10-1384Moose2Crunch3LBoxScore
14 - 2018-10-1596Pirates2Moose7WBoxScore
16 - 2018-10-17115Moose2IceCaps3LXBoxScore
18 - 2018-10-19127Sound Tigers3Moose4WXBoxScore
20 - 2018-10-21141Moose5Marlies2WBoxScore
22 - 2018-10-23158Moose2Stars3LBoxScore
24 - 2018-10-25168Bears4Moose3LBoxScore
26 - 2018-10-27185Moose1Americans3LBoxScore
28 - 2018-10-29195Checkers3Moose4WBoxScore
31 - 2018-11-01219Moose3Comets4LXBoxScore
32 - 2018-11-02229Bears2Moose5WBoxScore
35 - 2018-11-05252Phantoms2Moose4WBoxScore
37 - 2018-11-07265Moose4Americans5LBoxScore
39 - 2018-11-09276Moose3Crunch2WBoxScore
41 - 2018-11-11291Americans2Moose5WBoxScore
43 - 2018-11-13307Moose2Marlies3LBoxScore
45 - 2018-11-15324Monsters4Moose3LXBoxScore
47 - 2018-11-17340Moose-Wolf Pack-
49 - 2018-11-19353Bears-Moose-
52 - 2018-11-22377Marlies-Moose-
53 - 2018-11-23387Moose-Wild-
56 - 2018-11-26405Moose-Sound Tigers-
58 - 2018-11-28417IceCaps-Moose-
61 - 2018-12-01437Rampage-Moose-
63 - 2018-12-03456Moose-Bears-
65 - 2018-12-05472Bruins-Moose-
70 - 2018-12-10498Moose-Heat-
71 - 2018-12-11505Bruins-Moose-
74 - 2018-12-14527Moose-Devils-
75 - 2018-12-15536 Admirals-Moose-
78 - 2018-12-18552Moose-Bruins-
80 - 2018-12-20565Pirates-Moose-
82 - 2018-12-22581Moose-Falcons-
84 - 2018-12-24593Ice Hogs-Moose-
85 - 2018-12-25608Moose-Reign-
87 - 2018-12-27625Sound Tigers-Moose-
91 - 2018-12-31655Penguins-Moose-
93 - 2019-01-02668Moose-Penguins-
95 - 2019-01-04682Moose-Wolves-
96 - 2019-01-05691Penguins-Moose-
99 - 2019-01-08714Moose-Griffins-
100 - 2019-01-09722Wolf Pack-Moose-
103 - 2019-01-12747Checkers-Moose-
104 - 2019-01-13757Moose-Stars-
107 - 2019-01-16777Pirates-Moose-
109 - 2019-01-18788Moose-Pirates-
111 - 2019-01-20806Devils-Moose-
114 - 2019-01-23821Moose-Barracuda-
116 - 2019-01-25838Checkers-Moose-
118 - 2019-01-27848Moose-Devils-
120 - 2019-01-29862Moose-IceCaps-
122 - 2019-01-31876Wolf Pack-Moose-
124 - 2019-02-02889Moose-Gulls-
126 - 2019-02-04904Gulls-Moose-
131 - 2019-02-09934Devils-Moose-
133 - 2019-02-11953Moose-Comets-
135 - 2019-02-13964Moose-Senators-
136 - 2019-02-14970Condors-Moose-
139 - 2019-02-17993Moose-Senators-
140 - 2019-02-181000Moose-Penguins-
141 - 2019-02-191008Sound Tigers-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221032Wolves-Moose-
148 - 2019-02-261056Moose-Checkers-
149 - 2019-02-271064Crunch-Moose-
152 - 2019-03-021087Crunch-Moose-
153 - 2019-03-031092Moose-Phantoms-
154 - 2019-03-041094Moose-Barracuda-
158 - 2019-03-081123Senators-Moose-
161 - 2019-03-111140Moose-Checkers-
162 - 2019-03-121151Moose-Phantoms-
165 - 2019-03-151163Senators-Moose-
166 - 2019-03-161173Moose-Pirates-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
27 0 - 0.00% 0$0$3000100

Expenses
Players Total SalariesPlayers Total Average SalariesCoaches Salaries
1,725,750$ 1,617,000$ 0$
Year To Date ExpensesSalary Cap Per DaysSalary Cap To Date
460,156$ 0$ 460,156$

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 123 10,272$ 1,263,456$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20182198013007759181163011004429151035002003330323771362130021292617462552392484600180548256661928.79%611378.69%122143351.04%22440555.31%17333851.18%496342489154287140
Total Regular Season2198013007759181163011004429151035002003330323771362130021292617462552392484600180548256661928.79%611378.69%122143351.04%22440555.31%17333851.18%496342489154287140