Moose

GP: 45 | W: 26 | L: 14 | OTL: 5 | P: 57
GF: 170 | GA: 126 | PP%: 31.62% | PK%: 77.17%
GM : Rob Cammaert | Morale : 50 | Team Overall : 60
Next Games #722 vs Wolf Pack
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Scottie UpshallX100.008445797473588559506560822579826850660
2Brock McGinnX100.008257907669689060406472657560607150650
3Brad MaloneXX100.007876836676778262785760705761626550630
4Phil VaroneXX100.007266856866848867806962645944446750630
5Michael BournivalX100.007470827270737663505762675957586550620
6Dominik SimonXX100.007643857364597966396962612547476650610
7Carter VerhaegheX100.007368836468656664806461645844446550600
8Ryan HamiltonX100.008179856579616259745954665144446150590
9Anthony PelusoX100.008786906586535355504557725459596050580
10Christian FolinX100.009167867580697559255248772561616350670
11Kevin CzuczmanX100.007776806576818854255241633945455650610
12Carson Soucy (R)X100.008480926480667147254039653744445450590
13Connor Clifton (R)X100.007063876463596345253441573944445150530
Scratches
1Tom PyattXXX100.006942956567679955366559885369716850650
2Kenny AgostinoX100.007574787274828765506560655745456650630
3Chris ThorburnX100.008599676990477459546155692580816250620
4Corey TroppX100.005968376568646466506365576244446250580
5Colin McDonaldX100.008279896579646754505351664844445950570
6Nick Sorensen (R)X100.007168777168616257505258615544446050570
7Francis Perron (R)X100.006862836062687252505347584544445450540
8Stephen GiontaX100.007063876563565848604546584444445350520
9Kyle Schempp (R)X100.007364935964474749614647604544445350510
TEAM AVERAGE100.00766882677265735850565566475253615060
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
Scratches
1Mark Visentin100.0061707372637063676662455555150641
TEAM AVERAGE100.006170737263706367666245555515064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Tom PyattMoose (WPG)C/LW/RW4029184725513362729117710.66%1178819.711261840107000122248.00%256623021.19011001142
2Brock McGinnMoose (WPG)LW452423479202033151976212712.18%1256412.5468141544000024046.88%646621011.6703022783
3Phil VaroneMoose (WPG)C/LW45162844873353456129479312.40%755712.3867131544000003160.15%10942115001.5823214473
4Dominik SimonMoose (WPG)C/LW4571219112010127729569.09%13167.0200000000000140.38%104184001.2000000334
5Brad MaloneMoose (WPG)C/LW4511819756402237170571096.47%550911.3100001000012061.46%2054114000.7500332416
6Michael BournivalMoose (WPG)LW45311141133251877926433.80%53086.8500000000000066.67%6139000.9101122012
7Chris ThorburnMoose (WPG)RW4165116255155492251133711.76%1347311.54112539000002044.23%52619000.460012108021
8Carter VerhaegheMoose (WPG)C4553861610213752213.51%01282.852131030000000048.84%4331101.2500011121
9Carson SoucyMoose (WPG)D45066-1807040273317270.00%4976817.080001300014000.00%0342000.1600734002
10Connor CliftonMoose (WPG)D451560433524273119153.23%3778517.460000200004000.00%0724000.1500313002
11Kenny AgostinoMoose (WPG)LW63254302021185916.67%16110.32000020000010100.00%161001.6100112100
Team Total or Average4471051212266361341524724110943717159.60%141526111.772723508627700021514457.53%1594250173130.8628302428312826
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Mark VisentinMoose (WPG)2211830.8992.8813110063624324000.0000220012
Team Total or Average2211830.8992.8813110063624324000.0000220012


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Anthony PelusoMoose (WPG)RW281990-04-18No235 Lbs6 ft3NoNoNo2RFAPro & Farm675,000$0$0$NoLink
Brad MaloneMoose (WPG)C/LW281990-05-20No207 Lbs6 ft2NoNoNo2RFAPro & Farm650,000$0$0$NoLink
Brock McGinnMoose (WPG)LW251994-01-02No185 Lbs6 ft0NoNoNo2RFAPro & Farm887,500$0$0$NoLink
Carson SoucyMoose (WPG)D241994-07-24Yes212 Lbs6 ft4NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Carter VerhaegheMoose (WPG)C231995-08-14No181 Lbs6 ft1NoNoNo1RFAPro & Farm700,000$0$0$NoLink
Chris ThorburnMoose (WPG)RW341984-07-15 7:46:14 PMNo235 Lbs6 ft3NoNoNo2UFAPro & Farm975,000$0$0$NoLink
Christian FolinMoose (WPG)D271991-02-09No204 Lbs6 ft3NoNoNo4RFAPro & Farm955,000$0$0$NoLink
Colin McDonaldMoose (WPG)RW331985-07-15 1:46:14 AMNo219 Lbs6 ft2NoNoNo1UFAPro & Farm900,000$0$0$NoLink
Connor CliftonMoose (WPG)D231995-04-28Yes190 Lbs5 ft11NoNoNo3RFAPro & Farm500,000$0$0$NoLink
Corey TroppMoose (WPG)RW281990-07-25No185 Lbs6 ft0NoNoNo3RFAPro & Farm750,000$0$0$NoLink
Dominik SimonMoose (WPG)C/LW241994-08-08No176 Lbs5 ft11NoNoNo1RFAPro & Farm500,000$0$0$NoLink
Francis PerronMoose (WPG)LW221996-04-17Yes166 Lbs6 ft0NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Kenny AgostinoMoose (WPG)LW261992-04-30No200 Lbs6 ft1NoNoNo1RFAPro & Farm875,000$0$0$NoLink
Kevin CzuczmanMoose (WPG)D281991-01-09No206 Lbs6 ft2NoNoNo3RFAPro & Farm900,000$0$0$NoLink
Kyle SchemppMoose (WPG)C251994-01-12Yes178 Lbs5 ft11NoNoNo2RFAPro & Farm500,000$0$0$NoLink
Mark VisentinMoose (WPG)G251993-08-07 4:15:36 AMNo201 Lbs6 ft2NoNoNo1RFAPro & Farm900,000$0$0$NoLink
Michael BournivalMoose (WPG)LW261992-05-31No194 Lbs5 ft11NoNoNo1RFAPro & Farm650,000$0$0$NoLink
Nick SorensenMoose (WPG)RW241994-10-23Yes182 Lbs6 ft1NoNoNo2RFAPro & Farm850,000$0$0$NoLink
Phil VaroneMoose (WPG)C/LW281990-12-03No193 Lbs5 ft10NoNoNo4RFAPro & Farm750,000$0$0$NoLink
Ryan HamiltonMoose (WPG)LW321986-04-15No219 Lbs6 ft2NoNoNo1UFAPro & Farm650,000$0$0$NoLink
Scottie UpshallMoose (WPG)LW341984-07-15 7:46:14 PMNo200 Lbs6 ft0NoNoNo2UFAPro & Farm950,000$0$0$NoLink
Stephen GiontaMoose (WPG)RW341984-10-09No175 Lbs5 ft7NoNoNo1UFAPro & Farm990,000$0$0$NoLink
Tom PyattMoose (WPG)C/LW/RW311987-02-14No185 Lbs5 ft11NoNoNo2UFAPro & Farm750,000$0$0$NoLink
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2327.48197 Lbs6 ft12.00750,326$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
140122
2Brock McGinnPhil Varone30122
3Brad Malone20122
4Michael BournivalDominik Simon10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
140122
2Carson SoucyConnor Clifton30122
320122
4Carson SoucyConnor Clifton10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
160122
2Brock McGinnPhil Varone40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Carson SoucyConnor Clifton40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160122
2Brock McGinn40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Carson SoucyConnor Clifton40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
16012260122
240122Carson SoucyConnor Clifton40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
160122
2Brock McGinn40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
160122
2Carson SoucyConnor Clifton40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Extra Forwards
Normal PowerPlayPenalty Kill
Carter Verhaeghe, , Brad MaloneCarter Verhaeghe, Brad Malone
Extra Defensemen
Normal PowerPlayPenalty Kill
, , Carson Soucy, Carson Soucy
Penalty Shots
, , Brock McGinn, ,
Goalie
#1 : , #2 :


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1 Admirals10000010321100000103210000000000021.00033600367160540504530500162613715000.00%110.00%047788653.84%41379052.28%39673054.25%10927661024328610298
2Americans3120000010100110000005232020000058-320.333101727003671605125504530500161113857449222.22%6266.67%047788653.84%41379052.28%39673054.25%10927661024328610298
3Bears532000002813153120000011101220000001731460.60028497700367160521550453050016160521365811436.36%15380.00%047788653.84%41379052.28%39673054.25%10927661024328610298
4Bruins330000001138220000008261100000031261.000111627013671605100504530500167622833510330.00%90100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
5Checkers11000000431110000004310000000000021.0004812003671605315045305001625911106233.33%30100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
6Comets1000010034-1000000000001000010034-110.500358003671605345045305001633818144125.00%40100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
7Crunch422000001293211000007432110000055040.50012193100367160512450453050016792459461317.69%7271.43%047788653.84%41379052.28%39673054.25%10927661024328610298
8Devils1000000134-1000000000001000000134-110.50035800367160531504530500162888517400.00%5180.00%047788653.84%41379052.28%39673054.25%10927661024328610298
9Falcons11000000532000000000001100000053221.0005813003671605435045305001618412233133.33%110.00%047788653.84%41379052.28%39673054.25%10927661024328610298
10Griffins1010000036-3000000000001010000036-300.0003580036716052350453050016329417400.00%20100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
11Heat11000000431000000000001100000043121.0004711003671605335045305001637136114250.00%3233.33%047788653.84%41379052.28%39673054.25%10927661024328610298
12Ice Hogs11000000624110000006240000000000021.00061117003671605325045305001631814106350.00%2150.00%047788653.84%41379052.28%39673054.25%10927661024328610298
13IceCaps21000100440110000002111000010023-130.7504711003671605715045305001650192025300.00%5180.00%047788653.84%41379052.28%39673054.25%10927661024328610298
14Marlies31100100121111000010056-12110000075230.5001221330036716058150453050016862530365240.00%10370.00%047788653.84%41379052.28%39673054.25%10927661024328610298
15Monsters1000010034-11000010034-10000000000010.500358003671605315045305001625343144125.00%40100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
16Penguins330000001257220000005141100000074361.00012223401367160596504530500166216119419444.44%80100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
17Phantoms11000000422110000004220000000000021.000471100367160533504530500162311281033100.00%4175.00%047788653.84%41379052.28%39673054.25%10927661024328610298
18Pirates2200000013672200000013670000000000041.00013233600367160592504530500165515187396466.67%6266.67%047788653.84%41379052.28%39673054.25%10927661024328610298
19Rampage11000000633110000006330000000000021.000611170036716054750453050016241129154250.00%20100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
20Reign1010000012-1000000000001010000012-100.00011200367160526504530500161761711200.00%10100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
21Sound Tigers30201000810-2201010006601010000024-220.333815230036716058450453050016782156219333.33%13469.23%147788653.84%41379052.28%39673054.25%10927661024328610298
22Stars1010000023-1000000000001010000023-100.00024600367160536504530500162510611400.00%3166.67%047788653.84%41379052.28%39673054.25%10927661024328610298
Total45231401421170126442314501210905733229900211806911570.633170290460023671605153950453050016122837410885691364331.62%1272977.17%147788653.84%41379052.28%39673054.25%10927661024328610298
24Wild10000010321000000000001000001032121.0003360036716052250453050016326453133.33%20100.00%047788653.84%41379052.28%39673054.25%10927661024328610298
25Wolf Pack211000007701010000023-11100000054120.500713200036716056750453050016671441239444.44%8362.50%047788653.84%41379052.28%39673054.25%10927661024328610298
26Wolves1010000035-2000000000001010000035-200.00035800367160522504530500162891618100.00%3166.67%047788653.84%41379052.28%39673054.25%10927661024328610298
_Since Last GM Reset45231401421170126442314501210905733229900211806911570.633170290460023671605153950453050016122837410885691364331.62%1272977.17%147788653.84%41379052.28%39673054.25%10927661024328610298
_Vs Conference3319100120112887411912501100724626147500101564115430.652128222350023671605115050453050016900274912405973232.99%992277.78%147788653.84%41379052.28%39673054.25%10927661024328610298

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
4557L117029046015391228374108856902
All Games
GPWLOTWOTL SOWSOLGFGA
4523141421170126
Home Games
GPWLOTWOTL SOWSOLGFGA
2314512109057
Visitor Games
GPWLOTWOTL SOWSOLGFGA
229902118069
Last 10 Games
WLOTWOTL SOWSOL
640000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1364331.62%1272977.17%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
504530500163671605
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
47788653.84%41379052.28%39673054.25%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
10927661024328610298


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
1 - 2018-10-021Crunch1Moose5WBoxScore
5 - 2018-10-0631Moose9Bears2WBoxScore
6 - 2018-10-0743Crunch3Moose2LBoxScore
10 - 2018-10-1165Wolf Pack3Moose2LBoxScore
12 - 2018-10-1384Moose2Crunch3LBoxScore
14 - 2018-10-1596Pirates2Moose7WBoxScore
16 - 2018-10-17115Moose2IceCaps3LXBoxScore
18 - 2018-10-19127Sound Tigers3Moose4WXBoxScore
20 - 2018-10-21141Moose5Marlies2WBoxScore
22 - 2018-10-23158Moose2Stars3LBoxScore
24 - 2018-10-25168Bears4Moose3LBoxScore
26 - 2018-10-27185Moose1Americans3LBoxScore
28 - 2018-10-29195Checkers3Moose4WBoxScore
31 - 2018-11-01219Moose3Comets4LXBoxScore
32 - 2018-11-02229Bears2Moose5WBoxScore
35 - 2018-11-05252Phantoms2Moose4WBoxScore
37 - 2018-11-07265Moose4Americans5LBoxScore
39 - 2018-11-09276Moose3Crunch2WBoxScore
41 - 2018-11-11291Americans2Moose5WBoxScore
43 - 2018-11-13307Moose2Marlies3LBoxScore
45 - 2018-11-15324Monsters4Moose3LXBoxScore
47 - 2018-11-17340Moose5Wolf Pack4WBoxScore
49 - 2018-11-19353Bears4Moose3LBoxScore
52 - 2018-11-22377Marlies6Moose5LXBoxScore
53 - 2018-11-23387Moose3Wild2WXXBoxScore
56 - 2018-11-26405Moose2Sound Tigers4LBoxScore
58 - 2018-11-28417IceCaps1Moose2WBoxScore
61 - 2018-12-01437Rampage3Moose6WBoxScore
63 - 2018-12-03456Moose8Bears1WBoxScore
65 - 2018-12-05472Bruins0Moose3WBoxScore
70 - 2018-12-10498Moose4Heat3WBoxScore
71 - 2018-12-11505Bruins2Moose5WBoxScore
74 - 2018-12-14527Moose3Devils4LXXBoxScore
75 - 2018-12-15536 Admirals2Moose3WXXBoxScore
78 - 2018-12-18552Moose3Bruins1WBoxScore
80 - 2018-12-20565Pirates4Moose6WBoxScore
82 - 2018-12-22581Moose5Falcons3WBoxScore
84 - 2018-12-24593Ice Hogs2Moose6WBoxScore
85 - 2018-12-25608Moose1Reign2LBoxScore
87 - 2018-12-27625Sound Tigers3Moose2LBoxScore
91 - 2018-12-31655Penguins1Moose3WBoxScore
93 - 2019-01-02668Moose7Penguins4WBoxScore
95 - 2019-01-04682Moose3Wolves5LBoxScore
96 - 2019-01-05691Penguins0Moose2WBoxScore
99 - 2019-01-08714Moose3Griffins6LBoxScore
100 - 2019-01-09722Wolf Pack-Moose-
103 - 2019-01-12747Checkers-Moose-
104 - 2019-01-13757Moose-Stars-
107 - 2019-01-16777Pirates-Moose-
109 - 2019-01-18788Moose-Pirates-
111 - 2019-01-20806Devils-Moose-
114 - 2019-01-23821Moose-Barracuda-
116 - 2019-01-25838Checkers-Moose-
118 - 2019-01-27848Moose-Devils-
120 - 2019-01-29862Moose-IceCaps-
122 - 2019-01-31876Wolf Pack-Moose-
124 - 2019-02-02889Moose-Gulls-
126 - 2019-02-04904Gulls-Moose-
131 - 2019-02-09934Devils-Moose-
133 - 2019-02-11953Moose-Comets-
135 - 2019-02-13964Moose-Senators-
136 - 2019-02-14970Condors-Moose-
139 - 2019-02-17993Moose-Senators-
140 - 2019-02-181000Moose-Penguins-
141 - 2019-02-191008Sound Tigers-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
144 - 2019-02-221032Wolves-Moose-
148 - 2019-02-261056Moose-Checkers-
149 - 2019-02-271064Crunch-Moose-
152 - 2019-03-021087Crunch-Moose-
153 - 2019-03-031092Moose-Phantoms-
154 - 2019-03-041094Moose-Barracuda-
158 - 2019-03-081123Senators-Moose-
161 - 2019-03-111140Moose-Checkers-
162 - 2019-03-121151Moose-Phantoms-
165 - 2019-03-151163Senators-Moose-
166 - 2019-03-161173Moose-Pirates-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price3515
Attendance00
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
15 0 - 0.00% 0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
1,013,684$ 1,725,750$ 1,617,000$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 1,013,684$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 69 10,272$ 708,768$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
20184523140142117012644231450121090573322990021180691157170290460023671605153950453050016122837410885691364331.62%1272977.17%147788653.84%41379052.28%39673054.25%10927661024328610298
Total Regular Season4523140142117012644231450121090573322990021180691157170290460023671605153950453050016122837410885691364331.62%1272977.17%147788653.84%41379052.28%39673054.25%10927661024328610298